k4
]
s
;
S
S
i
2
2
=
=

g
x
4
el
=
=

O

pEpa gt an s {ea ks

T e

=3
L Aat e AR R L)

AL et e i e
R etttk e SATmIEREERI R P Tt Rk
= 4 b2

g:-}-:-:n'.-:-
gﬂ -
FE

UP-4040 Rev. 2

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIVAC ® Systems developments. The infor-
mation presented herein may not reflect the current status of the programming
effort. For the current status of the programming, contact your local Univac
Representative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of software changes and refinements. The Univac Division re-
serves the right to make such additions, corrections, and/or deletions as,
in the judgment of the Univac Division, are required by the development of
its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

© 1966, 1967, 1969 —~ SPERRY RAND CORPORATION PRINTED IN U.S.A

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

CONTENTS

1

BASIC ASSEMBLER LANGUAGE
I.1I. INTRODUCTION

1.2, SYMBOLIC CODING FORMAT
1.2.1. Computer Instruction Word Format
1.2.2. Assembler Format

1.2.3. Mnemonic Designators

1.2.3.1. Partial Word Mnemonics

1.3. DESCRIPTION OF FIELDS
1.3.1. Label Field

1.3.2, Labels
1.3.3. Externalized Labels

1.3.4. Subscripted Labels

1.3.5. Operation Field

1.3.6. Operand Field

1.3.7. Location Counter Declaration
1.3.8. Location Counter Reference
1.3.9. Setting Location Counters
1.3.10. Line Control

1.3.11. Line Continuation

1.3.12. Comments

1.3.13. Ejection of Paper

1.4, DATAWORD GENERATION

1.5, EXPRESSIONS

1.5.1. Elementary Items

1.5.2. Octal Values

1.5.3. Decimal Values

1.5.4, Alphabetic |tems

1,5.5. Line [tems

1,5.6. Floating Point and Double Precision
1.5.7. Operators

Ligud. L. Equal

Greater Than

_ess Than

_ogical Sum

- Logical Difference

** | ogical Product
Arithmetic Sum

Arithmetic Difference
Arithmetic Product
Arithmetic Quotient
Covered Quotient

Positive Decimal Exponent
Negative Decimal Exponent
7.14. */ Shift Exponent

p—
o
~
O
Iif\\/“

o [Y (o 7 B o5 g
- L] o L]
}

oy | Y |
ek et
NS —
¥ O¥ ~ ~_ ¥
|+h‘“~\.

Contents

| S ECT I

CONTENTS

1 to 4

1-1to 1-22
1-1

p—t et e et
A T
N Lo N PN -

I

— et a3 e e b b e et et
Pt ek (D OO0 ~d =] ~] O OO O

Rt
I

l——l

H

FPAGE:

UP-4040 UNIVAC 1106/1108 Contents
Rev. 2 ASSEMBLER

SECTION: PAGE:

2. ASSEMBLER DIRECTIVES 7-11t0 2-14

2.1. DIRECTIVES - GENERALIZED FORMAT
2.1.1. The Equate Directive, EQU

2.1.2, EQUF Directive

2.1.3. The Reserve Directive, RES

2.1.4. The Format Directive, FORM

2.1.4,1. ORing of Forms

2.1.5. The enp Directive, END

2.1.6. The Literal Directive, LIT

2.1.7. The Information Directive, INFO
2.1.8. The po Directive, Do

2.1.9. Listing Directives, LIST and UNLIST

2.2. SPECIAL DIRECTIVES
2.2.1. The Word Directive, WRD

2.2.2, The Character Directive, CHAR
2,2.3. The Negative Directive, NEG
2.2.3.1. Usage of Special Directives

. PROCEDURES AND FUNCTIONS

3.0 PROGEDUKES

3.1.1. Sample Procedures

3.1.2. PRocC Directives

3.1.3, END Directive

3.1.4. Referencing a Procedure
3.1.4.1. Definition of a Procedure Call Line
3.1.4,2. The Operand Field of a Call Line
3.1.5. Paraforms

3,1.6. Subassembly Technique

3.1.7. Nesting of Procedures

3.1.7.1. Physical Nesting

3.1.7.2. Implied or Logical Nesting
3.1.7.3. Levels of Procedures

3.1.8, Procedure Labels

3.1.8.1. Externalizing Procedure Labels
3.1.9. Forward References

3.1.10. Control Counter on a Procedure
3.1.11. Hierarchy of Label Definition
3.1.12. Waiting Labels -
3.1.13. Permanency of Label Definition
3.1.14. Noise Words

3.2 COMPLEX PROCEDURES
3.2.1. Do Directive, po

3.2.1.1. Conditional po

3.2.2, The NAME Directive, NAME
3.2.3. The go Directive, GO
3,2.4, Procedure Modes

3.2.4,1. Simple Mode

3.2.4.2. Generative Mode

3.2.4.3. Interpretative Mode

N O PO B RO N B IS B O D
|
— (O (O ~1 T 0N == B~ PN — —

p—

™o
!

r—l

[—

b=/
2-12
2-13
2-14

3-1to 3-35

T .

| D I

g OO OO LD VIO QO LI L Lo LV LV W W
|
— = (D O OO N LD D MNP —

D O
1
—_

L = O &

3-13
3-14
=10
3-19
3-16
3-17

3=17
3=11
3-18
3-20
3~£]
3=23
3=23
3~24
3-24

UP-4040

Rev, 2

UNIVAC 1106/1108 Contents

ASSEMBLER

3.3. SPECIAL APPLICATIONS

3.3.1. Instruction Word Generation
3.3.2. ARRAY Generation

3.3.3. Display Console Linkage
3.3.4, Print Linkage PROC

3.3.5, Example of a Procedure Listing

3.4, THE FUNCTION DIRECTIVE, FUNC

APPENDIXES
A. ABBREVIATIONS AND SYMBOLS

B. INSTRUCTION REPERTOIRE

C. ASSEMBLER ERROR FLAGS AND MESSAGES

ERROR FLAGS

. R - Relocation
. E — Expression
. T = Truncation
. L - Level

. D — Duplicate
. | = Instruction

C.
i
C.
C.
e
C-
i,
. J - Undefined

Ly
L.
L,
L
1.
i
L.
ke

1 Oy O o= 2 ™~ —

C.2. ERROR MESSAGES

D. RULES OF OPERATORS
D.1. RULES FOR DETERMINING RESULTS OF OPERATIONS
D.2. RULES FOR MODES OF RESULTS
D.3. RULES FOR RELOCATION OF BINARY ITEMS
D.4. RULES FOR HANDLING SINGLE AND DOUBLE PRECISION EXPRESSIONS

E. FORMAT OF ASM CONTROL CARD
F. RULES FOR PROCEDURE SEARCHING
G. CONSIDERATIONS FOR DEMAND PROCESSING

H. 1106/1108 ASSEMBLER OPERATING UNDER ALTERNATE EXECUTIVE SYSTEMS

H.1. DIFFERENCES IN OPERATION
H.2. ERROR MESSAGES GENERATED BY THE EXEC I1 ASSEMBLY SYSTEM

SELC TI1OM:

a=23

Sl
325
J=24
F=3
3=31

333

I I b
PO N P b b et

€2 C2C €3 €3 O L) €72 a
I

i FAGE:

D-11o D-2

D-1
Pl
P2
=2

E-1to E~1

F-1to F-1

G-1to G-I

H-1to H-2

H-1
H—2

UP-4040 UNIVAC 1106/1108 Contents

Rev. 2 ASSEMBLER) SECTION: | Pace:
TABLES
1-1. Mnemonic Designation and Absolute Addresses of Control Registers 1-4
1-2. Heading of Single and Double Precision Floating-Point Values 1--15
1-3. Hierarchy of Operators J1B
1-4. Arithmetic Results of a Floating-Point Operation 1-17
1-5. Mode of Result of Floating-Point Qperation 1-17
1-6. Rules for Determining if Results of Floating-Point Operations are Relocatable 1-18
B—1. Instruction Repertoire B-1

B-2. Mnemonic/Function Code Cross-Reference B-10

UP-4040 UNIVAC 1106/1108
Rev. 2 ASSEMBLER 1

SECTION: PAGE:

1. BASIC ASSEMBLER
LANGUAGE

1.1. INTRODUCTION

The UNIVAC 1106/1108 Assembler System is a symbolic coding language allowing
simple, brief expressions as well as complex expressions. The assembler provides
rapid translation from this symbolic language to machine-language relocatable object

coding for the UNIVAC 1106 System and the UNIVAC 1108 Multi-Processor System.

The assembler operates under control of the EXEC 8 Operating System. The outputs of
the assembler are made consistent with the system by using standard interfacing
routines both for the source files and the relocatable program generated. (See Appendix
H for differences between the processor herein described and the assembly processor
operating under the EXEC II Operating System.)

The assembly language includes a wide and sophisticated variety of operators which
allow the fabrication of desired fields based on information provided at assembly time.
The instruction function codes are assigned mnemonics which describe the hardware
function of each instruction. Assembler directive commands provide the programmer
with the ability to generate data words and values based on specific conditions at
assembly time. Multiple location counters provide a means of preparing for program
segmentation and controlling address generation during assembly of a source code
program.

The assembler produces a relocatable binary output for processing by the loading
mechanism of the system. If requested, it supplies a side-by-side listing of the original
symbolic coding and/or an edited octal representation of each word generated. Flags
indicate error in the symbolic coding detected by the assembler.

1.2. SYMBOLIC CODING FORMAT

In writing instructions using the assembler language, the programmer is primarily con-
cerned with three fields: (1) a label field, (2) an operation field, and (3) an operand
field. It is possible to relate the symbolic coding to its associated flowchart, if desired,
by appending comments to each instruction line or program segment.

All of the fields and subfields following the label field in the assembler are in free
form providing the greatest convenience possible for the programmer. Consequently, the
programmer is not hampered by the necessity to consider fixed form boundaries in the
design of symbolic coding.

UP-4040
Rev. 2

ASSEMBLER 1

UNIVAC 1106/1108

SECTION: PAGE:

1.2.1. Computer Instruction Word Format
The assembly program recognizes the set of mnemonic instructions representing the
machine code instructions listed in Appendix A of this manual. The format of these
machine code instructions is as follows:

f i a X h|i u
35 30|29 26| 25 22|21 18/17 16 |15 00

f indicates the function code.
j indicates the partial word designator or minor function code.
a indicates the control register or input/output channel.
X indicates the index register.
h indicates index modification.
i indicates indirect addressing.
u indicates the address field.

1.2.2. Assembler Format

A basic line of coding consists of a label field, operation field, and operand field.
Each field is terminated by one or more spaces, and may be divided into subfields with
a comma terminating each subtield. The last subfield in a field is terminated by at
least one space.

Two optional formats of a symbolic instruction are presented below.

LABEL OPERATION OPERAND

FIELD FIELD FIELD
Option I T A& T X
Option II F ' U G |

The entry in the operation field is the instruction mnemonic.

The entry in the A subfield represents the absolute address of an arithmetic, index,
or R register as required by the instruction.

The entry in the U subfield represents the operand base address. Indirect addressing is
indicated by means of an asterisk preceding the U subfield, for example, *U.

The entry in the X subfield represents the specific index register to be used. Index
register modification is indicated by means of an asterisk preceding the X subfield,
for example, *X.

The J subfield is used only to designate partial word transfers to and from the U
subfield. It has two optional positions: option I permits the J subfield to follow the
instruction mnemonic; and J designator follows the X subfield in option II. Option II
may not be used with line items (see 1.5.5).

UP-4040 UNIVAC 1106/1108

_Rev. 2 _ ASSEMBLER _ I _ fsecrion: 1 | Pace:
Example:
] LABEL A OPERATION A OPERAND

]'LlGlPl | 1 i | L JLlAJ | | i | |]]|2i‘| | lTiAiGi:Ll_rld’l I‘l l L1 | |

PIRISISI | lLlAl;lél 1 | I LJJ41;__1 | | I | ITIAIGI21 | = | L l | I ! l —

3.0 LBy o oy voa v oy o &80 g |T|A:GI3“|]131 N N D R T T N
Explanation:
Line 1:

Line 1 uses option Il format. LGP is the label starting in column 1. The operation

field contains the instruction mnemonic L A indicating the use of an arithmetic register.
The operand field uses the absolute arithmetic register address 12; the U subfield is
TAG. Indexing is not required so the construction comma space comma (,0,) is used
preceding the partial word designator 4.

[Line 2:

Line 2 uses option I format. The partial word designator 6 follows the instruction
mnemonic. The absolute address of arithmetic register 14 is in the operand field.

Line 3:

Since a label is not used, the instruction mnemonic may start in column 2. The
operand field contains the absolute address of arithmetic register 20. Indexing is
indicated from index register 10.

1.2.3. Mnemonic Designators

Registers may be addressed by using either the absolute register addresses or by
using mnemonic designators. When using instructions which require an index register,
the programmer uses absolute addresses 0 through 11 in the A subfield. If the opera-
tion field indicates an arithmetic register, absolute addresses 12 through 27 are used.
The special registers (R registers) require 65 through 79 in the A subfield.

At systems generation time, most 1106/1108 systems are equipped with the systems
procedure AXRS. This procedure enables the programmer to use the mnemonic desig-
nators of the registers and partial word designators.

When using an instruction which requires an arithmetic register, the mnemonic
designators AQ through A15 may be used in the A subfield of the coding line. The
special registers (R registers) use mnemonic designators R1 through R15.

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER 1

SECTIQNS PAGE:

When the instruction mnemonic specifies the use of an index register, the mnemonic
designators used are X0 through X11. Do not use register X0 as the contents of that
register are destroyed whenever an executive interrupt occurs (see Appendix C.1).
Table 1-1 cross-references the mnemonic designators with the absolute addresses of
all control (A,X,R) registers.

INDE X ARITHMETIC - R PARTIAL WORD
REGISTERS REGISTERS REGISTERS DESIGNATION
MNEMONIC [ABSOLUTE | MNEMONIC [ABSOLUTE | MNEMONIC [ABSOLUTE | MNEMONIC |[ABSOLUTE

X0 0 AQ 12 R1 65 W 0

X1 1 Al 15 ' R2 66 H2 1

X2 2 A2 14 R3 67 H1 2

X3 3 A3 15 | R4 68 XH?2 3

X4 4 | A4 16 R5 69 XH1 4

X9 5 Ad 17 R6 70 T3 o

X6 6 Ab 18 R7 71 T2 6

X7 7 A7 19 R8 12 T1 7

X8 8 A8 20 R9 73 S1 15

X9 9 A9 21 R10 74 S2 * 14

X10 10 Al0 22 R11 70 85 15

il 11 All 23 R12 76 S4 12

Al2 24 R13 77 S5 1.1

Al3 Zo . R14 /8 S6 10

Ald 26 R15 79 Ql /

Ald 27 Q2 4

Q3 6

Q4 5

U 16

XU 17

Table 1-1. Mnemonic Designation and Absolute Addresses of Control Registers
Example:
] LABEL ' S OPERATION A OPERAND

ILIAJ | ! il IAIOLIL I | lTlAIGI L& | L1 J | 1 e) | | | | I | | |] | |
LA 0,2, AN - TINT TN I AT AR IR A A B N B A T AR U
|] _LLIXLMI] | lxlslf e P | | 1115I |' | | L] | |) I | j | L 1
|1 JLIXIMI L lslfi podobo i g b B e v b4 T N T T T N

' UP-4040
Rev. 2

L

UNIVAC 1106/1108
ASSEMBLER 1

SECTION: PAGE:

Explanation:
[.ine 1 is the same as Line 2.
[Line 3 is the same as Line 4.

The above description reflects the normal machine code format. If, however, the]
designator is octal 016 or 017 and the following conditions exist, then the U field is
considered to be 16 bits in length (bit positions 17—00). Instruction addresses under
these conditions will be taken as 16-bit quantities and the binary instruction word
generated accordingly.

] =016 ot 01/ (immediate address)

X =4 (no index)

h =0 (no index incrementation)

i =9 (no indirect addressing)

I < 070 (J is not minor function code)

1.2.3.1. Partial Word Mnemonics

When the AXRS$ procedure is initiated, it is possible to use mnemonic designators
when indicating partial word transfers.

Example:
1 LABEL A OPERATION A , OPERAND
(LA o A s s o RIEVNG, L S 3 e b
LA o v 1207y oy oo OTER, 3 ey
Lol L (AAL A2, 3 PG e e
EBEE. . O EER Y TEEER AN AN e
Explanation:

Lines 1 and 2 are equivalent.
Lines 3 and 4 are equivalent.

An additional option is provided in that four special instructions involving arithmetic,
index, or R registers may be coded without indicating the appropriate A, X, or R. In
this case, the value of the A field determines which register is to be used, as

shown in the following example. The assembler inserts the appropriate instruction into
the coding.

UP-4040 UNIVAC 1106/1108

Rev. 2 ASSEMBLER SECTION: 1 PAGE:
Example:
LABEL A OPERATION A OPERAND

L L ILl | - | A [Alsl' .1 | | | |R1T|Bt4¢31 o] | | | | A P R (AR e
20 Ly oo o X2, 0 0 WMSIRITIMIE, | 4 o N
3' | ILl | | i | | | Rl7ll‘r | | | 1 i | 1T|EILLEI | | | [| | | | | | | |)
4' | AN EER . TR ERE. Ny TR NEEE N
ol LA X4 X,Z

Explanation:

Line 1 is equivalent to LA A5, RTB43.

Line 2 is equivalent to LX X2, WSRIME.

Line 3 is equivalent to LR R7, TELE.

Line 4 is equivalent to SA A9, SPO.

Line 5 is equivalent to AX X4, QXZ.
1.3. DESCRIPTION OF FIlELDS

The programmer is primarily concerned with the label field, operation field, and operand

field. The label field must start in column 1. The fields following the label field are
freeform and may start in column 2 if there is no label field.

1.3.1. Label Field

The label field is optional. When used, the label field must start in column 1. No
other field may start in column 1. The label field may contain a declaration of a
specific location counter, a label, or both. The label field is terminated by a blank.

1.3.2. Labels

A label identifies a value or a line of symbolic coding. When a label is used, the
assembler assigns it a relative address which is the value of the current controlling
location counter. A relative address is not assigned to a label used with assembler
directives EQU, NAME, FORM, PROC, DO, INFO, NEG, LIT, (see Section 2).

A label consists of one to six alphanumeric characters starting with an alphabetic
character in column 1.

UP-4040
Rev. 2

1.8.3

1.3.4.

L8

UNIVAC 1106/1108
ASSEMBLER L .

SECTION:

. Externalized Labels

An external label is a label the value of which is known outside the program. Such
labels are suffixed with an asterisk as is GOT* in the following example. The asterisk
does not count as a character of the label. Any label which is assigned a single pre-
cision value including locations of double precision constants may be externalized.
They are assigned the relative address of the first word of the value generated.

Example:

Subscripted Labels

The assembler permits usage of subscripted labels. A subscript may be any legitimate
assembler item, an expression, or another subscripted label. A label may not be used
as its own subscript.

A subscript is enclosed in parentheses immediately following the label with no inter-
vening spaces between the label and subscript. If more than one subscript is used,
each subscript is separated by a comma. A series of subscripts is enclosed in
parentheses.

Examples:

L{3)

L(4,1)

L(1,M(1))
L(I(1),]J(1),K(1))
162, P{1LR(1, 1)+ 017%)
I.{4,3,S1ZE//2)

The asterisk of an externally defined subscripted label precedes the left parenthesis
of the subscript, for example, DOG*(1). The asterisk, parenthesis, and subscripts
are not counted as characters of the label. Subscripted labels may be redefined in a
program without producing an error flag.

Operation Field

The operation field starts with the first nonblank character following the label field
and is terminated by a blank except as noted below. If no label is used, the operation
tield can start in column 2, the blank in column 1, indicating the end of the label
tield. The contents of the operation field may be any one of the following:

UP-4040 UNIVAC 1106/1108
Rev. 2 ASSEMBLER 1 8

SECTION:; PAGE:
mm

B An instruction mnemonic, with a possible J designator.

B A+ ora- sign indicating a data word of octal, decimal, or alpha designation. In
this case a space is not necessary to terminate the operation field. That is, the
operand or the value may follow the + or - immediately. For example, +2 is
equivalent to +b2.

B An assembler directive.

m A label previously defined as a legitimate entry point to a PROC or the label on
a FORM directive line. (See Section 3.)

B An alphanumeric constant enclosed in apostrophes without a leading sign.

If the operation field contains an assembler directive other than RES (which changes
the location counter) or DO (which may generate object code), the location counter
is not affected. In all other cases, the controlling location counter is incremented by
the number of words generated after the line has been processed.

Example:
1 LABEL A OPERATION A OPERAND

CLob Xty oy XS 05 b
. l+118111IlLIlILIIllI_LlllLlLJIJ_lllILlll
3.IIIIIlRlolslsIIlt_Lllill_Illllllllilllllll
4. IEINIDIIllIlllllll1111!IIL11L1111111I!L

Explanation:

Line 1:

The operation field contains the instruction mnemonic LXI.

Line 2:

The operation field contains the data word 8.

Line 3:

The operation field contains the alphabetic item ‘ROSS’.

Line 4:

The operation field contains the assembler directive END.

1.3.6. Operand Field

The operand field starts with the first nonblank character following the operation
field. The components of the operand field are called subfields and represent the
information necessary to complete the type of line determined by the operation field.
Subfields are separated by commas. A comma may be followed by one or more blanks.

It is not necessary for the operand field to contain the maximum number of subfields
implied by the operation field. When omitting a subfield, other than the normal first
or last subtfield, the construction, comma zero comma (,0,) or two contiguous commas
(,,) is necessary.

r

UP-4040
Rev. 2

O\t.l‘l-h-w!\.)

LABEL A

UNIVAC 1106/1108 y
ASSEMBLER SECTION:

PAGE:

If the last subfield is omitted, a comma is not required to appear after the last coded
subfield. A space period space (b.b) coded after the last subfield stops the assembler
scan and reduces assembly time.

Example:

OPERATION A OPERAND

A5y, (TIAG, 41,08,6,

-
P
G
s

X2, 0 ITWAGY ey 0

IAI9IFI IFJ_liLIi"l'Ir 1Ql3l =~ p dF 1 b Lk

Frm—

|

1:8:7.

LLocation Counter Declaration

There are 0-31 location counters in the assembler. Any location counter may be used
or referenced in any sequence. These counters provide information required by the
collector to regroup lines of coding in any specified manner. The regrouping capability
enables isolation of instruction components giving flexibility in segmentation.

A program remains under control of location counter zero if no location counter is
explicitly specified. When a specific location counter is specified, all subsequent
coding is under its control until another location counter is explicitly specified.

$(e) written as the first entry in the label field declares a specific location counter.
The e is any location counter 0 through 31.

A location counter designation may precede a label. The label must immediately
follow the location counter designation. The format is $(e), LABEL with no inter-
vening blanks.

Example:

lLlAL L1t 1 1 1 1A14Ir1118111.slzl Jd 9 1 i 4. d okl

—

1J o L L aTIAG L b

hemmms -

[SJALJ 111|1|A21rl ITlElMIPi | L1 i1 | ; P 1

I TLLEM o X130, RIATIE)

S p—
i
b
e

J MIA N

I lAlNixl | 1 ¢ 1 1 IX|3L'l51'l512I R S N N Y N W S N

UP-4040
Rev. 2

1.4.8,

1.9.9,

UNIVAC 1106/1108
ASSEMBLER

SECTION:

RPAGE:

Explanation:

[Lines 1 and 2 are assembled under location counter O if no location counter was
specified prior to this point.

LLines 3, 4, and 5 are assembled under location counter 2.

Line 6 and subsequent coding are assembled under location counter 3.
LLocation Counter Reference

Reflexive addressing may be achieved within a symbolic line of coding. The current
location counter or a specific location counter can be referenced. The symbol for the
current location counter reference is $§. When the assembler encounters the §, it in-
serts the value of the current location counter.

When $+n is placed in the operand field, n-1 lines of code under control of the current
location counter are skipped. If the $+n construction is used, care should be taken so
that the +n does not extend into a procedure (see Section 3). Extension into a procedure
causes particular problems, especially when a variable number of lines of code are
generated by the procedure.

Example:

A | lJI BT EREEER NI YRR E NN
I N L. ”161’1T£E1M1P1 L 1]
EEREEEEERE. L EEEE RN L TN Y

Explanation:

In this example J $+2 in the first line transfers control to the SA line.

Setting Location Counters

If it were desired to have the object program loaded at relative main storage address

010000, the line

BEEEEEEEERNEEIEEEEEEERENEN

e (1) R/EyS, | 0,1,0,0,0,0,-,8, L]

should precede source code instruction. The —§$ is absolutely necessary if it is not
the first line in the program to ensure that any previous value of location counter 1
will be negated.

10

UP-4040 UNIVAC 1106/1108 1
Rev. 2 ASSEMBLER

SECTION: PAE:

1.3.10. Line Control

The label field of a line may or may not be blank. The assembler stops interpreting
operand information on the basis of one of the following four events, whichever
occurs first:

(1) the maximum number of subfields required by the operation has been encountered;

(2) the maximum number of lists required by a PROC reference has been encoun-
tered (see 3.1.4);

(3) the 80th character has been read; or

(4) the line terminator (b.b) is encountered.

1..3.11. lL.ine Continnation

If a semicolon (;) is encountered outside of an alphabetic item (see 1.5.4), the cur-
rent line 1s continued with the first nonblank on the following line. Any characters
on the line after the semicolon are not considered pertinent to the program being
assembled, and are transferred to the output listing as comments. A semicolon is
used within a comment in order to continue that comment on the next line. If a line
is broken within a subfield, the next character must begin in column 1 of the

next line.
Example:
] LABEL A OPERATION A OPERAND
] 1LLN1A3 | 1_,1_A_L41rl | ITgALBlLIfiSIszL_l T S TN A T | A B N TR N A B
2 1_llLlNl"Il1Llllli'1llJ.JliIIL!IIL[IIL!IIIJ
3. A141’: L1 lTLAIBlLl;l L9 % % b 4 % ¢ | v o3 % v & § g gt o bob o i #o b b g.d
4'3|'1211'|111;|||t111111|1|11111111||L|1||1
A, ,COMMENT, LI NE;
M1A1Y| IAILLSIOE 18|E1 ICIOLNITIILNlUlElDl iOLNl 1T1H|E1 1L||!NIEJ_ 1B|E1L|0|w1

Explanation:
Lines 2, 3, and 4 produce the same result as line 1.

1.3.12. Comments

The construction, space period space (b.b), terminates a line of coding. Any addi-
tional subfields implied by the operation field are taken to be zero. A continuation
or termination mark may occur anywhere on a line. Any characters may be entered
as comments except the apostrophe (') (see 1.5.4).

UP-4040
Rev. 2

UNIVAC 1106/1108

ASSEMBLER e ion L P
Example
| LABEL A OPERATION A OPERAND
| | [| . . | | I | | | | |]]] 1 I | | | 1 | l | | 1 |] | | | (1 |

LA AT, 0, 1 GCART ., JENTTIH AL ZAIT O NG
OIFL]C10|N1T1R|01L| 1F1|1L|E1 |S|U|B|R|0|U|TIIIN1E

ii__l__llilllll

1.3.13. Ejection ot Paper

A slash (/) appearing in column 1 advances paper in the printer to the top of the
next page. This same line may also contain a line of coding with the label field
starting in column 2. The slash (/) prints on the new page.

1.4. DATA WORD GENERATION

A + or - in the operand field, followed by one to six subfields, generates a constant
word. the + or - sign may be separated from the subfields by any number of blanks. If
the + sign is omitted, a positive value is assumed. Subfields are separated by commas,
which may be followed by one or more blanks.

If the operand field contains one subfield, the value of the subfield is right-justified
in a signed 36-bit word unless the value is double precision in which case it is right-

justified in two 36-bit words. If the operand field contains two subfields, a data word
containing two 18-bit subfields is created; the value of each subfield is right-justitied
in its respective field. Similarly, three subfields generate three 12-bit fields, four
subfields generate four 9-bit fields, and six subfields generate six 6-bit fields. Each
subfield in the operand field may be signed independently. If the subfield is preceded
by a minus sign, the operand is complemented.

l—t]1613|8141 L. i L F o 0yt 1% | 1PJR OlDlUICIEIsl loleT AlLi 17171717 171717I3|7¢71717| |
1*1‘181’1:1"101215 71 L T . tPIROIDluinlsI ioiclTAtLl 1010101017:01717171512101
1_15J_6Jf 101410|7u "1311131 [5 1P1R0101ULC1Ejs_t 101C1TALLL1 I7I7IOI710i410 7|713|0|61 I
I 18“1_10141: 121] r1—|218Lr|0|117lr|_ 1141 A GO T A P AN | |

i T HIEI; 1L|| |N|EI 1A;| Bl_g,; vl E: 1PJ R|0|D,__UL_CI El Sl ;Olcl Tj_éllLl

i: G e ——— - e J

[f the operand field contains one subfield immediately followed by a D or a value
ereater than 36 bits in length, the assembler generates a 72-bit value contained in two
consecutive 36-bit computer words. The 72-bit value is signed and right-justified.

“-J_ - S — - e S
Jomihiedados Fo Loioouded I\

liilJlillllllltl_L T Y S 1 N N T I [SR . (R MRS SN S TR SRS SO

l JOJClTiAlLJ 17I 717 71717I7l71 717J7J7L 717171717I7I7L3L717 7171 | 1 | l I i | l«

3,2,1,67.76,., ,0CTAL 000000000012 3455432167 7|6i
———— —

—— = et — R

12

UP-4040
Rev. 2

(9. B

1.6.1.

1.5.24.

L. 9.,

1.5.4.

UNIVAC 1106/1108
ASSEMBLER

EXPRESSIONS

SECTION:

FPAGE:

An expression is an elementary item or a series of elementary items connected by op-

erators. Blanks are not permitted within an expression. The combination of single and

double precision values generally results in a double precision value (see Appendix D).

Elementary Items

An elementary item is the smallest element of assembler code that can stand alone;
an elementary item does not contain an operator.

Octal Values

An octal value may be an elementary item. Such an item is a group of octal integers
preceded by a zero. The assembler creates a binary equivalent of the item’s value
right-justified in a signed field. If the sign is omitted, the value is assumed to

be positive.

For example,

+017 PRODUCES OCTAL WORD 000000000017
-074 PRODUCES OCTAL WORD 777777777703
~021 PRODUCES OCTAL WORD 777777777156

A double precision octal value is produced by writing a constant larger than 36 bits
or by placing a letter D immediately after the last octal digit.

Decimal Values

A decimal value may appear as an elementary item within an expression. A decimal
item is a group of decimal integers not preceded by a zero (see 1.5.2). Such a decimal
value, is represented by a right-justified and signed binary equivalent within the

object field. If the sign is omitted, the value is assumed to be positive.

For example,

PRODUCES OCTAL WORD 000000000014
+20438 PRODUCES OCTAL WORD 000000004000
-4162 PRODUCES OCVAL WORD 777777773625

A double precision decimal value is produced by writing a value larger than 36 bits
or by placing the letter D immediately following the last decimal digit.

Alphabetic Items

Alphabetic characters may be represented in 6-bit Fieldata code as an elementary
item. The characters must be enclosed in apostrophes. It is not permissible to code
an apostrophe within an alphabetic item. An alphabetic item appears left-justified

within its field. If there are less than six characters, the alphabetic item is followed
by Fieldata blanks (05 for each blank).

13

UP-4040
Rev. 2

Un

UNIVAC 1106/1108

14

SECTION:

If an alphabetic item is preceded by a plus or minus sign, it may contain a maximum
of 12 characters. A positive signed value appears right-justified within its field with
the remaining field filled in with zeros. A minus sign preceding the value produces
the complement of the value and appears left-justified in the field. If the number of
characters is less than seven, only one computer word is used. An alphabetic item
used as a literal is assumed to be preceded by a plus sign. A D immediately following
the right apostrophe forces double precision (see 1.5.6).

‘HEAD" PRODUCES OCTAL LEFT-JUSTIFIED 151206110505
+ ' HEAD’ PRODUCES OCTAL RIGHT-JUSTIFIED 000015120611
‘HEAD7890° PRODUCES 151206116770 716005050305
+ ' HEAD7890’° PRODUCES 000000001512 061167707160
+*HEAD’D PRODUCES 000000000000 000015120611

1.5.5. Line Items

A line i1tem 1s any symbolic line, less label, enclosed in parentheses. Line items
may be elementary items or expressions.

A literal is represented as an expression enclosed within parentheses and without
connecting operators. The assembler then generates a word containing the constant,
and this word appears in a literal list at the end of the program. The value of the
line item is the address of the generated constant.

Duplicate literals do not appear in the literal list. When location counters are used,
the literals appear at the end of the coding associated with a particular counter with
only duplicated literals for that particular counter eliminated.

Literals may be double precision if the symbolic line is a single subfield datum of
the double precision form. The value of this expression is the address of the first
word of the literal.

If the symbolic line of a line item is a data word, the leading + may be omitted. If
the symbolic line is an instruction word, the J field may not be supplied in the opera-
tion field. Line items within line items are permitted up to eight levels.

o~ On

Example:
I LABEL A OPERATION A OPERAND
BB o oo ow & 4 o Wiksay g OB E I o oo o5 3 oa ow s owm e K g B
By Lo poaey o SRS g g v BB w g g b e i O, B
R EEEETE . O ITEER Y. T ET Y o e i
TE v IAS G BRIENG) ot et 1.8
LT SN T R E R ILA D E TR R T REE
A v M2y GOGTE] A4 3D D
oLt v A4y 00410000 S T R B
|+|(l6i*131+181/l4[_12f)l b g1 o b] A (N T S | 1 1 1 1 |

UP-4040

Rev. 2

L. 0,

UNIVYAC 1106/1108

Explanation:

Line 1. (U) is the address of the literal 6.

Line 2. U address is 6. + (6) is a constant.

Line 3. (0400) is the constant of octal 400. It is a literal.

Line 4. Alphabetic BRING is generated. It is a literal.

Line 5. The instruction] PRR is generated. It is a literal.

Line 6. This instruction will load the location of the location of constant 899

into A7.
LLine 7. Two literals will be generated.
Line 8 The constant of 000000000400 will be generated.
Line 9. Not a literal. The line item has a value of 18.

Floating Point and Double Precision

A tloating-point decimal or octal value may be represented as an elementary item by

including a decimal point within the desired value. The decimal point must be pre-
ceded and followed by at least one digit. The letter D must immediately follow the

last digit with no intervening spaces. If the sign is omitted, the value is assumed to

be positive.

116384.0 PRODUCES FLOATING-POINT WORD 217400000000
+16384.0D PRODUCES 201740000000 000000000000
19.0D PRODUCES 230000000000 000000000000

Table 1-2 gives the rules for handling single and double precision expressions.

OPERATION FIRST VALUE SECOND VALUE RESULT
Single Jngle
Double .
>,<,= Single Single
Doubl
A Double
Single Single Single @:
e e e R Double
N LE Double Single Double
Double
Single Single Single @
. Double
oukile Single Double @
Double
. Single :
Single Single
)k Double |
- Double SIng e Double 1
Double
NOTES;

@ Multiplication, addition, or subtraction in fixed-point modes may result in a double precision value.

@ These cases are not permitted for fixed-point values. If fixed-point values are used, they result in
a single precision result with an E error flage.

Table 1-2. Handling of Single and Double Precision Floating-Point Values.

15

PAGE:

UP-4040

Rev. 2

1.7

UNIVAC 1106/1108

ASSEMBLER . _ _ sEcTIoN: 1 o AGE:

Operators

There are 14 operators in the assembler which designate the method, and implicitly
the sequence, to be employed in combining elementary items or expressions within a
subtield. Blanks are not permitted within an expression. Evaluation of an expression
begins with the substitution of values for each element. The operations are then
performed from left to right in hierarchical order as listed in Table 1-3.

The operation with the highest hierarchy number is performed first; operations with
the same hierarchy number are performed from left to right. To alter this order,
parentheses may be employed but care should be taken to avoid redundant parentheses
which may result in the generation of a literal.

It an elementary item or an expression is enclosed in parentheses and an operator
appears adjacent to the parentheses, the function of the parentheses in this instance
is that ot algebraic grouping. The value of this quantity is the algebraic solution of
the items or expression enclosed in parentheses. This value should not be confused
with the value produced by a literal and therefore is not an address.

All the following operators are assembly-time operators.

HIERARCHY OPERATOR DESCRIPTION
Highest 6 4 a* + b is equivalent to a*10P

e a* - b is equivalent to a*10~D
* / a*/b is equivalent to a*2P

5 * arithmetic product
/ arithmetic quotient
// covered quotient (a//b is equivalent to o E“ 1)

“ *t arithmetic sum

» arithmetic difference

3 kK logical product (AND)

2 e o logical sum (OR)
—— logical difference (EXCLUSIVE OR)

Lowest 1 a=Db has the value 1 if true, 0 if otherwise
a>Db has the value 1 if true, 0 if otherwise

a<b has the value 1 if true, 0 if otherwise

e N]

Table 1-3. Hierarchy of Operators

Table 1-4 gives the rules for determining the arithmetic result of a floating-point
operation.

16

UP-4040

Rev. 2

UNIVAC 1106/1108

ASSEMBLER Ccrion.
LEVEL 1st ITEM OP 2nd ITEM RESULT
6 Any e Binar@ Positive Decimal Exponentiation
Any *_ Binary Negative Decimal Exponentiation
Any gk Positive Binary® Positive Binary Exponentiation
Any */ Negative Binar Negative Binary Exponentiation
Sign filled
5 Any * Any Arithmetic product
Any / Any Arithmetic quotient
Any // Any Arithmetic covered quotient
4 Any + Any Arithmetic sum
Any - Any Arithmetic difference
Any ok Any Logical product
Any ++ Any Logical sum
—— Any Logical difference
1 Any L = Any 1 if true
O if false
NOTE:

@ A nonbinary, that is, floating-point value results in an expression error flag (E).

Table 1-5 gives the rules for determining the mode of the result of a floating-point

Table 1-4. Arithmetic Results of a Floating-Point Operation

operation.
LEVEL st ITEM OP 2nd ITEM RESULT
6 Any ko o Binar@ Floating
Any %/ Binar@ Binary
5 Binary * /.]/ Binary Binary
Floating | *,/,// Binary Floating
Binary Bk ud I Floating Floating
Floating | *,/,// Floating Floating
4 Binary +, — Binary Binary
Floating | +,— Binary Floating
Binary +, — Floating Floating
Floating | +, — Floating Floating
) 3 Any * ok Any Binary
2 Any ++, —— Any Binary
1 Any Loy B2y, o Any Binary
NOTE:

@ A nonbinary, that is, floating-point value results in an expression error flag (E).
Table 1-5. Mode of Result of Floating-Point Operation

PAGE:

17

UP-4040 UNIVAC 1106,1108 1 18
Rev. 2 ASSEMBLER

SIELIMMIT L WO R =

Table 1-6 gives the rules for determining whether the result of a floating-point
operation 1s relocatable.

LEVEL ist ITEM OP Z2nd ITEM RESULT NOTE

1 Any <,=,> | Any Not relocatable
2 Any ++,—— | Any Not relocatable 3
3 Any ik Any Not relocatable 3
4 Not relocatable| +,— Not relocatable Not relocatable

Relocatable + ,— Not relocatable Relocatable

Not relocatable| +,— Relocatable Relocatable

Relocatable +,— Relocatable Relocatable 2
5 Any ¥ /.// | Any Not relocatable 3,4
6 Any *p, ¥— %/ Binary F Not relocatable 3,95

NOTES:

Floating-point items are never relocatable.
The difference between two relocatable quantities under the same location counter is not relocatable.
Except as noted in () , the relocation error flat (R) is set for these operations.

Multiplication of a relocatable quantity by an absolute 1, or absolute 1 by a relocatahle quantity is relo-
catable. Multiplication by absolute 0 is absolute Q0. In either case, no error flat is set.

A nonbinary, thatis, floating-point value for the 2nd item results in an expression error flag (E).

& @0

Table 1-6. Rules for Determining if Results of Floating-Point Operations are Relocatable

1.5.7.1. - Equal

The equal operator compares the values of two expressions. If the two values are
equal, the assembler assigns a value of 1 to replace the expression. If the values
are not equal, the value of the expression is 0. If A equals 1, the value of the
expression is 1; if A is not equal to 1, the value of the expression is 0.

LDiol | 1 IAI:I11 [,, LRLEISE l3l L1 l

il \/\ — VA

[t the condition specified is met (A = 1), the controlling location counter is
incremented by 3; otherwise the line is skipped.

1.5.7.2. » Greater Than

The greater than operator compares two expressions. If the value of the first ex-
pression 1s greater than the value of the second expression, the assembler gives

a value of 1 to the expression. If the value of the first is equal to or less than the
second, a value of 0 is assigned to the expression. If A is greater than 2, the value
of the expression is 1; if A is not greater than 2, the value of the expression is 0.

UP-4040 UNIVAC 1106/1108
Rev. 2 ASSEMBLER 1

SECTION: P AGE:

If A is greater than 2, the value of the expression is 5, otherwise the value is 0.

1.5.7.83. % Liess Than

The less than operator compares two expressions. If the condition specified is met,
a value of 1 results. If the condition is unsatisfied, a value of 0 is assigned to

the expression. If A is less than 1, the value of the expression is 1; if A is not less
than 1, the value of the expression is 0.

If Ais less than 4, the value of the expression is 1; otherwise the value is 0.

1.5.7.4. ++ Logical Sum

The logical sum operator (OR) provides the logical sum of the values of two
expressions.

A! I IEIQIUI | |4E [- . |-

LY N T I

The value of the expression above is 14,

1.5.7.5. —— Logical Ditfference

The logical difference operator (XOR) produces the logical difference between the
values of two expressions.

The value of the above expression is 17.
1.9:7:6, == [.pgictal Protuct

The logical product operator (AND) produces the logical product of the values ot
two expressions.

L Ll i
N1 L qBEQuU T 1(

The value ot the expression above is 1.

UP-4040
Rev. 2

UNIVAC 1106/1108

ASSEMBLER T N -

Lo s

L.5°7 .8,

1.5.7.9.

1.5.7.10.

+ Arithmetic Sum

The arithmetic sum operator produces the algebraic sum of the values of two
exXpressions.

b f {4 g 4 b L & F ¢ v 4 ¢ op o w L% @B 4 £ f ¢ 13 1. % 3 l

LA AL L I BIAIRF 2] L L |

Arithmetic register A6 is loaded with the contents of the second word following
the word labeled BAR.

~ Arithmetic Difference

The arithmetic difference operator produces the algebraic difference between the
values of two expressions.

Arithmetic register A11 is loaded with the contents of the word immediately preceding
the word labeled KLEE.

* Arithmetic Product

The value of the first expression is used as the multiplicand; and value of the

second is used as the multiplier; the product is obtained by the multiplication of
the two expressions.

NIIIEJQLUllI1]|71LilillLlltlllllltllll

141*141+I+I]l711I!ll_lillllllliiLllllIil

The value of the expression above is 17. The 4*4 is operated upon first. The
logical sum is then computed.

/ Arithmetic Quotient

The value of the first expression is the dividend; the value of the second is the

divisor; the result of the operation is the quotient; the remainder is discarded by

the assembler.
Y1111E1Q1U11114111111111111|1Lllillil

ll]lol—l—lsl/iYi_llLlllll_lLIiiiillllllll

20

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

L.5,7.11.

1ao.7.12.

i - g

The value of the expression above is 8. The expression 8/Y is operated upon
first. The logical difference is then computed.

// Covered Quotient

The covered quotient operates in the same fashion as the arithmetic quotient with
one difference: if a remainder greater than zero is created during the division, the

quotient is increased by one.

A E, QU 3

L GA 310) A/ /12
s L e,

The value of the expression above is 2.
*+ Positive Decimal Exponent

The positive decimal exponent is a method of symbolically creating a floating-
point constant in UNIVAC 1106/1108 format. x*+b is equivalent to x*10P.

L 11 g +y1,.,6,3 84D +,4, | | |
e I

The value of the first expression above is octal 222711017776. The value of the
second expression is 201740000000 000000000000.

*— Negative Decimal Exponent

The negative decimal exponent functions in the same manner as the positive

exponent. It produces a floating-point constant in UNIVAC 1106/1108 format.
—b

x*—-b is equivalent to x*10

+ 8 - 9 7 21%. =3

. 1+1]16131814|0101010|Di*1*141

———————

The octal value of the first expression above is 166775467206. The value of the
second expression is 201740000000 000000000000.

SECTION: 1 PAGE:

21

UP-4040

Rev. 2

UNIVAC 1106/1108

1.5.7.14. */ Shift Exponent

The shift exponent allows the programmer to enter a number and specify its binary
positioning to the assembler. The shift may be left or right according to the sign
of the exponent (—b will produce a right shift). x*/b is equivalent to x*2Db.

OPERATION A OPERAND A COMMER

T R e e - e S —
e = e e

] LABEL A

4z, ,bo , ,7,2,,1] ,+04000,00010,0,00,000,0,0,0/0,00,0,0,0,0,D,*/[CV=Z}), 4 | 4 |

Pt dik s Boogleccalie a8 il aindboe il il e RPN TN NN L [OORPYY.) (VRITS | CTNCHL| TR [N [P (R (TR, [V | PO (NG NN [NRNY) | NN (RS | S | SN YRR OSSN [MNRRRN AONORN SRR NSRRI

llJILLLPIILlij_llilI I S S SN CE (G | SN O I PO (A, N O AL | EERY () | MR (R T Lveus e

IIILTIIL_LIIIIIIIIIIllIlI'Ei!EIlll]llll':illlll!l

The line above will generate 144 words.
The octal value of the first pair of words is 400000000000 000000000000.

The petal values of the final worde are 7777777177777 777777777777,

22

UP-4040 UNIVAC 1106/1108
Rev. 2 ASSEMBLER) i

SECTION: PAGE: - |

=. ASSENMBLER DIRECTIVES

2.1. DIRECTIVES — GENERALIZED FORMAT

The symbolic assembler directives control or direct the assembly processor just as
operation codes control or direct the central computer processor. The assembler direc-
tives are represented by mnemonics written in the operation field of a symbolic line of
code. The tlexibility of the directives is the key to the power of the assembler. The
directives are used to equate expressions and to adjust the location counter value, and
allow special controls over the generation of object coding. The general format for
directives is;

LABEL DIRECTIVE EXPRESSION

Not every directive uses all three fields. Symbols appearing in the operand field of
directives must be defined prior to their appearance in the directive. A detailed de-
scription of each of the 15 assembler directives follows.

2.1.1. The Equate Directive, EQU

The EQU directive equates a label appearing in its label field to the value of the
expression in the operand field. The EQU directive must include all three fields:

LABEL EQU EXPRESSION

A value defined by the EQU directive may be referenced in any succeeding line of
coding by using the label equated to it. If a label is to be assigned a value, it must
appear in an EQU line. If the label is not equated to a value prior to its use or

reterence, the label is considered undefined. Labels equated to relocatable expres-
sions may appear anywhere in the program.

It 1s possible to generate a double precision equate statement by having the operand
contain one numeric subfield immediately followed by the letter D with no inter-
vening spaces.

If a particular expression is used frequently throughout a program or procedure, it is

highly expeditious to use the EQU directive to substitute a simple label for the entire
expression.

Example:

R R
 (EQUY, 7,/ 2,28,16,*31[+(5/,7B))

S (S

>

L |
oo b A V6 2 AL I
¢, . EQU, , 10,6/4,6/4,73,62,1/0,1,2,34,5D,
+ C
| T O R D S | I N R S SR S S ! [

UP-4040
Rev. 2

UNIVAC 1106/1108 _
ASSEMBLER W B AGE)

Labels defined by an EQU directive are relocatable only if the value is relocatable.

1'COINLS|T1 L |_|£1Q1U: [101]L0|0!0101 I N S N S SR B |
2. illlILIAIl__[_IlLA!AIFIICIOINISITl_illlIj_LJLlI -—

The U portion of the instruction generated on line 2 becomes 010000. As a result,
the L A instruction loads arithmetic register 4 with the contents of storage location

010000.

L is equated to the value 010000. Line 2 equates A4 to 16. The third line produces
object code 10 00 04 00 0 01Q000.

2.1.2. EQUF Diteéctive

If repeated reference is made to the j and u fields of an instruction word, it may be
desirable to have one symbol represent these fields.

Example:

1. Al | |E|Q|U1 r l+l(lll$L | 1011'1',1'101"01’101'1”!)t (IS TN T L]

IlllillAlllfllilAlIlIlIlIIIIIJILJLl_I

I$ refers to the field form: 6,4,4,4,2,16.

SA, the mnemonic for the Store A Register instruction, refers to the I$ form. The
value of the A is the line item in the operand field of the EQU directive. For j = 014
and U= 010164, the result is:

01 00 O1 00 O 000000 from SA
00 14 00 00 O 010164 line item

01 14 01 00 O 010164 output word

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

The EQUF directive builds a nonliteral line item which includes the u, x, j, and h-i

subfields in the I$ form. The format is:

LABEL EQUF exptessions

Example:

F!1ELD EQUF | 0,100,

8!,11 4

L Nk

SECTION:

PAGE:

The three operand expressions represent u, x, and j, respectively. The tield detinition
thus created could be referred to in this manner:

giving
10 00 04 00 O 000000
00 16 04 10 3 000100

10 16 04 10 3 000100

Another example:

from LA

from line item in EQUF

output word

I. FISITiRi S T B lElQLU_l D (N S Lz,l_o_l_L_l_l__I._l_l__J._.l_l
2‘ FLRIELGISI | | | EiQLUiFl_ l I lFls TiR1+111211LXI41 "
3. SIAI booallo b b ool o |A15u| T N S lFlRlE_IGlSl (N S S T

Line 2 identifies the FSTR as appearing
appears as:

Ul 00 05 08 4
00 00 00 04 O

in index register 4. The field definition

000000 from Line 3
000040 from Line 2

01 00 05 04 O

000040 output word

Care should be taken so that nonzero fields are not ORed (see 2.1.4.1).

UP-4040 UNIVAC 1106/1108
Rev. 2 ASSEMBLER 2

2.1.3. The Reserve Directive, RES

The RES directive increments or decrements a control counter. The operand field of
the directive contains a signed value e that specifies the desired increment if
positive, or decrement if negative. This value may be represented by an expression.
The tormat is:

LABEL RES e

Symbols appearing in the expression e must be defined prior to the RES line in which
they appear.

The RES directive may be used either to create a work area for data, which is not
cleared to zeroes, or to specify absolute location counter positioning to the assem-
bler. If a label is placed on the coding line which contains a RES directive, the

label is equated to the present value of the control counter which is the address of
the first reserved word.

Ll LS AL 6

B E T At 4,
—— —— e J

The line above will store the contents of register A4 into the fifth word of the re-
served area BETA.

2.1.4. The Format Directive, FORM

The FORM directive describes a special word format designed by the user. The
word format may include fields of variable length. The length in bits of each field
is defined in the operand field of the FORM directive. The value entered in the
operand field specifies the number of bits desired in each field. The format is:

LABEL FORM S < A -

The number of bits specified by the sum of the values of the operand expressions
must equal 36 or 72 depending on whether a single or double precision form word
is desired.

By writing the label of the FORM directive, the form defined in that line of coding
may be referenced from another part of the program. The label of the FORM line is
written in the operation field and is followed by a series of expressions in the
operand field. The expressions in the operand field specify the value to be inserted
in each field of the generated word or words.

A reference to a specific FORM label always creates one or two words composed in
the format specified. Truncation occurs and an error flag is set if a given value ex-
ceeds the space indicated in the associated field in the FORM directive.

DGR R L IR, 0 o.. |- 2

UP-4040

Rev. 2

UNIVAC 1106/1108
ASSEMBLER 5

SECTION: PAGE:

The series of expressions in the operation field must equal the number of fields
specified on the FORM directive. If the number of fields is not equal, an E flag is set.

4, 6,4

I AL T

J 2

|1NISLT1RI FlORlM I lél“l4

The line above would produce the following:

54 00 04 01 0 010002 (assembler listing)
54 01 01 01 2 010002 (in main storage)

In the example below a truncation flag is set.

L1 9 WM EEPEEEENNE

t,NSTRA FORM 6,48, 12}, 1,8,,,6,,,6/.,6 |

Ll L L NS TRA 0,2,7,,,0,10,0,0,,,1,0,,,1,0,0/(0,,,1,6,7,,,0,1,2,,14,

The line above would produce the two words as follows, plus an error flag because
the expression 167 (247,) requires more than six bits,

270010000012 001750471204 (in main storage)

2.1.4.1. ORing of Forms

A field in a FORM reference line can be a line item. If the form of the line item is
identical to the form referenced, and is not a literal, the corresponding fields from
borh form references are ORed.

For example, consider two identical forms:

Al FORM, 210909009

B (FIORM; | 91,09 1% 19 1o

The four fields of A and B are 9 bits in length,

UP-4040
Rev. 2

2 dinsd s

UNIVAC 1106/1108
ASSEMBLER

SECTION:

PAGE:

A line item is created with one of these forms and its value is equated to a label:

¢, EQU, , + (A, | 1,,,3,,,2,,,4,)] | |

C shown in octal is:

The + preceding the line item suppresses creation of a literal. Next, using C as

001 003 002 004

one of the values, refer to form B. If two forms have nonzero values in any common

position, those fields are ORed.

The results are shown 1n octal:

C =001 003 00
B = 000 006 007

result = 001 007 007

The nonzero bit positions have been ORed. Field 1 of B is all zeros as C has

taken that position.

The END Directive, END

The processing of an END directive indicates to the assembler that it has reached

004
010

014

the end of a logical sequence of coding. The format is:

An END line must not include a label. The operand tield (e) is used only with

iunctions (see 3.4).

The interpretation of the operand of an END directive depends on its associated

EN L e

directive. When an END directive terminates a program assembly, the operand field

specifies the starting address in the object code produced at execution time.

UP-4040 UNIVAC 1106/1108
Rev. 2 ASSEMBLER 2 |

SECTION:

2.1.6. The Literal Directive, LIT

The LIT directive defines a literal table under the control of the location counter
in use when this directive is encountered by the assembler. The format is

LABEL LIT

with no operand. The label is optional.

Through the use of LIT directives, a number of separate literal tables can be cre-
ated. Duplicate literals are eliminated within each unique literal lable; however,
duplicates may exist in separate literal tables. In the absence of a LIT directive,
all literals are placed in the literal table under control of location counter O.

e |

LA e, 04

In the example above, the octal literal 000000000004 is placed in the literal table
controlled by location counter 0 because no LIT directive has been used.

If a literal table not under control of location counter 0 is required, a LIT
directive must be used. A specific location counter is declared by writing § (e)
starting in column 1, the e being any location counter number 0 through 31.

The octal literal 000000000004 is placed in the unlabeled literal table controlled by
location counter 2.

Labels may follow the declaration of a specific location counter. The format is:

$(e),LABEL

There may be no intervening spaces. The label may not be subscripted or suffixed
by an asterisk nor may the label be referenced.

If all LIT directives in a program have labels, any literal not preceded by a label is
placed in the literal table under the control of location counter 0.

UP-4040 UNIVAC 1106/1108
Rev. 2 ASSEMBLER ceerions 2 sace.

It a LIT directive has a label, all literals to be placed in this literal table must be
preceded by the label associated with this LIT directive.

$ 1012117 OM; ¢ 00T v v e v b g e s g
Lt Lttt A o v %4
C Ll deyxy oy 148,,,T,0(M(,0,1,000,), |

T

The literal 000000000004 is placed in the unlabeled literal table controlled by
location counter 0. The literal 000000001000 is placed in the labeled literal table
controlled by location counter 2.

[f the LIT directive has no label, all subseguent literals not preceded by a label are
placed in the literal table designated by the LIT directive until another unlabeled
LIT directive is encountered. Any number of unlabeled LIT directives may appear
throughout a program, each having this same effect. If desired, unlabeled literals
can follow each program segment for which a separate location counter is used. Only
one unlabeled literal table is allowed for each location counter.

Example:

T R T SR T RO SN N T N SR SR T S S W N L1
1.19,2),,,TOM, | b [T R T S
2.1$,(,1,8) LI T
3. v v 4y kA A4, 004D
it i w e K BB, o o by JTIEXT D,
B.19i0% .0 o o v o AL LT, o oo wop oo b opog oG
4 v o phe By T O w. . o5 (AL EQ) L 4 s

Explanation:

The literals in lines 3 and 4 are placed in the literal table controlled by location
counter 18.

The literal in line 6 is placed in the literal table controlled by location counter 9.

The literal in line 7 is placed in the literal table controlled by location counter 2.

UP-4040 UNIVAC 1106/1108
Rev. 2 ASSEMBLER 2

The literal 000000000004 is placed in the table controlled by location counter 0.
TOM and BOB were defined by previous LIT directives.

Literals are generated only during pass two of the assembler. Unlabeled literals

are generated under location counter 0 until a LIT directive with a blank label
supersedes this arbitrary selection of location counters,.

2.1.7. The Intormation Directive, INFO

The format of the INFO directive is:

LABEL INFO a C

1

The label is optional; a represents one of two types of storage that is assigned by
the collector. If a is 4, location counter cq is assigned blank common. If there is a

label and a is 2, location counter c7 is assigned as labeled common block. For a
discussion of common blocks see UNIVAC 1108 Multi-Processor System FORTRAN
V Programmers Reference Manual, UP-4060 (current version).

2.1.8. The DO Directive, DO

The DO directive causes the assembler to process a line of coding a specified
number of times. Two entries appear in the operand field of this directive. The
second operand entry may be any valid symbolic line with or without a label. The
number of times this line is processed is determined by the value of the expression
contained in the first operand entry which is called the DO count. The two operand
entries are separated by blank comma (b,). If the second operand entry does not

have a label, the construction space comma space (5,5) is used between the first
and second operand.

The formats are:

LABEL DO e. b, 56 LINE OF CODING
LABEL DO e 5, LABEL 5 LINE OF CODING

SECTION: PAGE:

UP-4040
Rev. 2

UNIVAC 1106/1108

ASSEMBLER SECTION: 2 PAGE!

The label is optional. When used, the label is equated to a counter whose initial
value is always 0. Each time the line of coding is processed, this counter, the label
value, is incremented by 1 until the required limit specified by eq is reached. Thus,
it the DO count is 0, the final value of the label is 0.

The value K is generated ten times. The first value of K is 1; the last value is 10.

If the DO count is negative, the E flag is set (see Appendix C) and no lines are
generated.

The DO directive may be conditional. That is, the DO count may depend on alteration
of previously assigned values. For example:

If A is less than B, the expression A<B is true, and its value is 1. Thus, the line -3
1s processed once. If A is not less than B, the expression is false, its value is 0,
and the line —3 is not processed.

The first operand, DO count, may be an expression to be evaluated as:

AI LEinUl I6l I

L DO

In this example the DO count is evaluated as 6—-5+4=5. As a result, the data line is
processed five times as though it had been coded as follows:

LTI RN ST E Y T
AT IR L IR T RN T I N T
LGl 3005 o 4 118 ¢ ¢ v oo poaa Bod o vow a g g b il
TLAG(4,), . +18, v & o] A S T S R R T R
T,AG 5:) {1 1,0

10

UP-4040
Rev. 2

2.1.9.

2o

UNIVAC 1106/1108
ASSEMBLER

SECTION:

In this case +L*2 is evaluated successively as 1*2, 2*¥2, 3*2, etc.

PAGE:

DO statements may be nested within DO statements up to eight levels. Execution of

statements proceeds from innermost to outermost.

LLJ_I

This line produces a table of 24 entries as follows:

M=1, N=1 value
= 2 value
= 3 value

M= 2, N= 1 value
= 2 value
= B value

M=8, N=1 value
value

|
o

= 3 value

Listing Directives, LIST and UNLIST

These two directives enable the programmer to control the listing of the assembler.
The LIST directive negates the effect of no options on the ASM control card or a
previously used UNLIST directive which suppressed the listing. They may be used

1S
1S
1S
1S
1S
1S

1S
18
1S

ur B W B Wb

10
11

as often as desired in the source code, but must be removed when a complete listing

is desired. It should be noted that the image containing the UNLIST directive 1s not
printed and the image containing the LIST directive is printed. The format is:

L1ST
UNLIST

Neither label nor operand are used.

SPECIAL DIRECTIVES

Three special assembler directives are available to assist in defining an object
computer to the assembler. Use of them overrides certain built-in definitions for the

1106/1108 assembler. The directives are:

WRD — Redetines the word length (in bits) for the object machine,

CHAR — Redefines the character set for the object machine.

NEG — Redefines the format of negative values for the object machine.

11

UP-4040
Rev. 2

2B,

Lol

UNIVAC 1106/1108 2
ASSEMBLER

 SECTION: PAGE:

The Word Directive, WRD

The WRD directive indicates the object computer word size in bits. When an output
word is generated, it must not exceed the stated output word size, or a truncation
error is noted. This limitation is ignored during the evaluation of expressions, since
values are limited only to the double precision word size, 72 bits. Only when a ‘line
item’ is generated will the defined output word size be considered. The format of the
WRD directive is:

WRD e

where e is any expression with a value equal to or less than 72. For example, WRD
18 indicates an 18-bit word size for this assembly. To illustrate the effect of the
directive, symbolic lines are shown side by side with the octal code which would
be produced by the assembler. The 1106/1108 character set (Fieldata) is assumed:

Line Output
‘ABCBDEFG’ 060710
111215

140505

+ 0 000000
+64 000100

The Character Directive, CHAR

The CHAR directive is used to alter translation of the 1106/1108 character set to an
alternate set of 6-bit equivalents. The translation takes place any time the assembler
encounters one or more characters enclosed by apostrophes. The format is:

CHAR Cl;elyczsezy“'fcn?en

where, for each pair of expressions, ¢ is the value of the 1106/1108 character to be
replaced by e. The value of both the ¢ and e expressions must be in the range 0 to

077. If greater than 077, a T error flag marks the line (see Appendix C).
For example, if

were used, the characters ‘A’, ‘B’, and ‘C’ would be given the values 024, 025, and
026, respectively. Alternately, if

l, DO, 3, , CHAR, 4 +5,, +]02,3, | | | 1\

12

UP-4040
Rev. 2

2

UNIVAC 1106/1108
ASSEMBLER 2

SECTION: PAGE:

were used, it would have the same effect. Here are output examples, assuming a
36-bit word length:

Line Output
‘RABBCC? 242425252626
+ “A7 000000000024
e I 000024 000025

The Negative Directive, NEG

The NEG directive is used to alter the output format of negative quantities and has
value when assembling for alternate computers with negative representation other

than ones complement form. The format is:

LABEL NEG e

where the label has a special interpretation and represents the value of an 1106/1108
negative quantity in the expression e which contains the label which gives in 1106/
1108 terms the value to be used as output for negative values. For example, if the
following signed magnitude algorithm were used,

DUM NEG DUM——=0377777777777

then the following values would be output for the indicated negative quantities:

SOURCE VALUE OUTPUT VALUE
- 400000000005
+2, —3 T 000002000003

The T error tlag indicates that the minus value cannot be placed in an 18-bit field.

Similiarly,
NG NEG NG+1

would result in negative values being output in twos complement form.

—14 TTTEIET Tt 1he

13

UP-4040
Rev., 2

UNIVAC 1106/1108
ASSEMBLER

2.2.3.1. Usage of Special Directives

SECTION:

PAGE:

These directives must precede lines of symbolic code which are to be affected by

them. If they are coded within a procedure, the procedure must be explicitly
referenced by name to get the effect of the special directives. Furthermore, such
a procedure must be subassembled in assembly pass 1. Do not code the second

PROC directive operand. The first example following is correct; the second is not.

D,E,F,;S* PROC| 0,,,0 |
L Ll G YWRD, 3,0, |
E N\D,

T . ..

After a special directive is encountered by the assembler, its effect continues
until another is encountered. Also, the effect is available at all levels ot pro-

cessing, whether or not in a procedure. For instance,

The WRD directive in P procedure has no effect outside the procedure until P is
referenced. All coding following the reference to P produces 24-bit words. All

L)

(2)
(3)
(4)

(5)
(6)

For code at line

Ul & W M) =t

P *

WRD 30
etc

PROC

WRD 24
etc

END

ELC

P
efc

WRD 30
etc

Word length, in bits, is

30
24
30
24
30

coding following the WRD redefinition at line 5 produces 30-bit words, until either

another reference to P or another redefinition is encountered.

14

UP-4040
Rev. 2

Sk s

Dikals

Sl

UNIVAC 1106/1108
ASSEMBLER 3

SECTION:

PAGE:

3. PROCEDURES AND FUNCTIONS

PROCEDURES

Often a program requires repetitive sequences of coding. These sequences are not
necessarily identical but there is enough similarity to make the writing of these
sequences mechanical. The procedure is a method employed by the assembler which
permits the automatic generation and modification of repetitive coding sequences.
Procedures are implemented by the PROC directive. The PROC directive uses
procedure samples to generate the required coding. As the assembler encounters each
procedure sample, it stores the procedure and the procedure’s entry points. When a
call to the procedure is encountered, the assembler references the procedure entry
point table, locates the procedure, and then generates the required coding. The pro-
cedure sample must physically precede any call to it in the main program.

Sample Procedures

A procedure sample must begin with a PROC directive and end with an END directive.
The PROC and END directives are the delineators of the procedure.

PROC Directives

The format of the PROC directive is as follows:

LABEL PROC OPERAND

The label field contains any label not exceeding six characters. The label identifies
the specific PROC and is the means by which the procedure is referenced.

The operation field contains the PROC directive. This directive signals the
assembler that sample coding is to follow.

The operand field may contain zero, one, or two expressions. Subfield 1 contains a
value specifying the maximum number of fields appearing on that procedure’s call
line (see 3.1.4.1),

Subfield 2 of the operand field cannot be coded unless a value appears in subfield 1.
The value entered in subfield 2 indicates the maximum number of lines of code

generated when the sample is referenced. Subtield 2 must be omitted in the following
situations:

m if forward references are made in the procedure (see 3.1.9);
m if external definitions are made in a procedure (except entry points);
m if the procedure could generate a variable number of lines;

B when a change of location counter control occurs within a procedure; or

B when a label on a procedure reference line is to be assigned to a line other than
the first line of the procedure.

UP-4040 UNIVAC 1106/1108
Haw. 7 ASSEMBLER section: > | paces

Except for the conditions stated above, subfield 2 should be used because it
eliminates one assembly pass, thereby shortening assembly time.

A line terminator (5.5) must precede any comments on the PROC directive line.

] LABEL A OPERATION A OPERAND
]'ClolMJPIAIRJ L L] |P1R10tC1 i]tfi.IlOl l Lo L 5 i | } J | | | L1
2‘M101v1E1 | | | 1 | lPiRlolcl O | L1 |] | | | | S l | I foo b A b k. __}

Line 1 contains the label COMPAR. Subfield 1 in the operand specifies one field
may appear on the reference line. Subfield 2 indicates a maximum of ten lines will
be generated by the procedure.

Line 2 has no operand field. The period halts the scanning of the line thereby
reducing assembly time.

3.1.3. END Directive

The END directive must appear at the end of each procedure. END is coded in the
operation field. The label and operand fields are left blank.

Example of a simple procedure:

]"‘ LIOJ ALDL I IPJR 01 C1 | L | L | [] L 1 R R R S S B R N R |
2 A N Y S B ILLAI | 1115|:L iTJAlGI L1 1 1 | N S SR S N S N R |
3 I l L1 1 iElNlDJ_ [R | { i | | I L1 N L1 T S R

® Lines number 1 and 3 contain the PROC and END directives which serve as
delimiters to the sample contained between them.

B LOAD is the label by which this procedure may be referenced.
Each time this procedure is called, the code provided by line 2 is generated.
3.1.4. Reterencing a Procedure
When a procedure reference is encountered at assembly time, code from the specified

procedure is generated. The procedure must appear physically in the main program
before it is referenced. To reference a procedure, a call line is used.

UP-4040

Rev. 2

UNIVAC 1106/1108
ASSEMBLER 3

SECTION: PAGE:

o.1.4.1.

Detinition of a Procedure Call Line

A procedure call line informs the assembler that generation and modification of a
code sequence are to begin at this point. The operation field contains the external

label of the procedure desired. The operand field contains the expressions
(parameters) needed for modification. The format of a call line is:

LABEL PROC LABEL OPERAND

The label field of a call line is optional; if used, the label starts in column 1
and may contain from zero to five alphanumeric characters.

The operation field contains the label of the desired procedure.
The operand field contains the parameters needed to modify the procedure.

A period should be used to terminate the call line. This halts the scan of the
line and reduces assembly time.

] LABEL A OPERATION A OPERAND
.I- 1 1L101A101 T 2 (| l (AR TSR R ATRNN . SRR N S | - N A I l booaboad e Lo b
2-C1A1L1L1]L ficon b lslPtEicl T B R I N,] Y A N (U N SR N S | | OSSP I, SN "N |
3. AlDlDlPI iada b 1A]D1012121 W\ |4 Le ITIAIGI | 19191,1P|UtR| 20 R R,

3142,

Line 1 has no label. The LOAD procedure will be generated.
Line 2 contains the label, CALL 1. The procedure referenced is SPEC.

[Line 3 contains the label ADDP. The procedure ADD22 is referenced. The operand
field contains four parameters (see 3.1.4.2).

The Operand Field of a Call Line

The operand field of a call line may contain parameters used to modify values
appearing within a procedure. These parameters appear in fields and subfields of
the operand. There may be any number of fields and any number of subfields may
appear within the fields. Fields are separated by blanks; subfields are separated
by commas.

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

3

SECTION! PAGE:!
Subfi'eld1 (81’b1)
FIELD (a,))
Subfield (a ,b)
2 1 2
Subfield (6, ,5.)
Subfield (a,,b)
FIELD, (a)
Subtield (a_,b)
2 2 2
Subfieldn (az,bn)
OPERAND OF
B ke 1sL08 Subfield (a,,b)
FIELD3 (aE)
. Subfield (a_,b)
Z 3 2 i
) Subfieldn (ag,bn)
: Subfield (a b,)
FIELDn (a_) -
Subfield2 (b
Subfieldn (an,bn)
Example:
LABEL A OPERATION A OPERAND
ILlAl : 1A191;1 |61; 141; 151|—1T1 | LJ | 1M1; 1 INISITI 1w| ,1R;{JS“ (T "
| |] | 1 | | 1 J | | i] | | 1] | I | |] g ko3 o F-.d |] | | & | 1

Spaces separate fields; commas separate subfields.

Explanation:

Field 1 contains subfie]

ds 6, 4, SL'T

Field 2 contains subfields JIM, INST.

Field 3 contains subfields W, R, S, T.

UP-4040
Rev. 2

UNIVAC 1106/1108

ASSEMBLER SECTION:! 3 PAGE:!
3.1.5. Paraforms
The parameter reference form, commonly called the paraform, is a device for selec-
tively obtaining parameters in the operand field of a call line. Paraforms appear in
the operand field of a line of symbolic coding and are used only within the bounds
of a procedure.
A paraform consists of the name of the procedure referenced, immediately followed
by a set of parentheses. Enclosed in the parentheses are two values separated by
a comma (a,b). The a refers to a specific field in the call line. The b refers to a
specific subfield within the specified (a) field.
Example:
] LABEL A OPERATION - A OPERAND
I ClAlLlLl | LMlolviEl*l | 1T1A:G:'1XI’1Q1'1Z|E1T1A1 ! LAI]IOU LELElTl L° 1
2. | vy S QRTNV|, L, 4,,,5,,,112,,,6, , A, B , |T/AG,,, TE, .,
3.]A,L,P, H A D, I|V, "~ 3 1 9
Explanation:
LLine 1 contains the label CALL. There are six parameters appearing in two fields.
Field 1 contains four subfields:; field 2 has two subfields.
Line 2 has no label. There are eight parameters appearing in three fields. Field 1
has four subfields; field 2 has two subfields; and field 3 has two subfields.
Line 3 has three parameters contained in one field.
The following is a cail line for the MOVE procedure:
CALL3 L MOVIE* TAG,Q , | R, 35,0, Ty o0 v Ly
| | | l] | |] ! | | — | | | 1 | | | | 1 1 | | L1 J | | I | 1
The operand expressions on a procedure call line provide specific values for a
general framework of coding.
]'MIOLVIEI*IIlPlRLglCLItilil_LlllJLlJL!lIIllllllll
2.0 oo LA AS L MOVEQT2, 0) e o 1
b oo o S AL o A, MOVECTTY g) e b
Al v v AN A MOVEQIT 02D b

UP-4040 UNIVAC 1106/1108 3
Rev. 2 ASSEMBLER

SECTION: _ | PAGE:

A procedure structure must appear physically in the main program before it is
referenced.

Explanation:

Line 1 is the PROC directive. MOVE is the label of the procedure and the means
by which the procedure is referenced. The asterisk makes the MOVE PROC available
to the other procedures (see 3.1.8).

Line 2. Register A3 is loaded with the parameter appearing in the first subfield of
the second field of the call line, in this case, R.

Line 3. Register A5 1s loaded with the parameter appearing in the first subfield in
First Field, in this case, TAG.

Line 4. The parameter appearing in the second subfield of the first field is
subtracted from register A9, in this case, Q.

Paratorm constructions are summarized below (PL stands for PROC label):

PL(a) The value generated by (a) is equal to the number of subfields in the
specified (a) field.

PL(a;b) The value generated by (a,b) is the parameter appearing in the b
subfield of field a.

Pl When the procedure label is written with no specified field or subfield,
the value generated is a constant equal to the number of fields in the

call line. It entry was made by a NAME line, this figure is greater by
1 (see 3.2.2).

PLla, *b) Generates a value of 1 if the b subfield of field a is preceded by an
asterisk. If there is no asterisk, the value generated is 0.

PL(0,0) Réfers to the operand on a NAME line. It is undefined and set equal to
0 if entry was not made by a NAME directive (see 3.2.2).

PL(0,1) Refers to the second subfield of the operation field given at time of call
| in a NAME directive (see 3.2.2). It is undefined if entry is not made by
a NAME directive.

PL(O,n) Refers to the (n+1) subfield of the operation field submitted with a
NAME directive (see 3.2.2).

Example:

LABEL A OPERATION A OPERAND

CAL, L4, , ADD|P* | TAG, Q | , F/I ,LE, A, Bl | Y EL,

UP-4040 UNIVAC 1106/1108

Rev. 2 ASSEMBLER ——— 3 e s e,
Below are lines of code appearing within a procedure:
, LABEL A OPERATION A
2 L oo % 0y X2, v, /ADDP, S R I T T (S
2 L LAy A4, ADIDDIPICT2 01D 1
3 L b A A ADDP I)
4.0 L b X XIS, 1 i ADDPOY3y32)) 0y

[Line 1. The value generated for the operand field is equivalent to the number of
fields in the call line. In this case, 3 is the value.

Line 2. The value generated for the operand field appears in the first subfield of
the second field of the call line. In this case, FILE is the value generated.

Line 3. The value generated is a constant that is equivalent to the number of sub-

fields contained in the specified field. In this case, the constant 2 is generated
(field 1 has two subfields).

Line 4. The value generated is 0 (field 3 does not have two subfields).

Line 5. The value generated is 1 (asterisk precedes the referenced parameter).

In the procedure example shown below, a constant is added to a given value, and
the result is stored. With each call, the given value and the storage location vary.

AlDtDiPI*i . (P/RO|C

LA (1,6, (A

L LR LL T

(SA L 1 1,6,,,AD

1E1N1D1 I

The entrance point is indicated by the asterisked label. At each call, the Load A
(LA) instruction references the first subfield of the first field in the operand field of
the call line. Similarly, the Store A (SA) instruction references the second subfield
of the first field. In this example, the first field is the only field.

UP-4040 UNIVAC 1106/1108
Rev. 2 ASSEMBLER cemrmoms” B |

The following exemplifies a call on this procedure:

16,,,00163)),

I 1

1.6 CIO[NIS[TIAI

L7
b RAM

S

A second call on the proc.edure might be:

ADDP |, 0,64, RAM2 | | | |

e e it

The equivalent coding is:

LA 18, (40 _6141)1 L]

AA 16, COINS TA | 12

SA V6, RAMZ, lg
M P

3.1.6. Subassembly Technique

The assembler employs a technique which allows it to temporarily discontinue the
current assembly and begin a subassembly. Upon completion of the subassembly,
the original assembly continues where it left off. It is possible for the subassembly
to reference any value of the assembly which caused the subassembly to take place.
In turn, the subassembly may generate values or code which can be handed up to the
the calling assembly.

The user device which directs the assembler to begin a subassembly is the PROC
directive. The source code to be assembled is the sample provided by the user and
delimited with the PROC and END directives. Subassemblies may in turn begin
other subassemblies; these may be nested down to 62 levels.

Since the assembler employs this technique, the overhead involved with a procedure
(that is, interrupting current assembly, sectioning tables, limiting references and
definitions, restarting the original assembly) is somewhat costly in terms of time.

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER 3

SECTION:

FPAGE:

3.1.7. Nesting of Procedures

The nesting of procedures enables the programmer to use the same label in different
procedures. Therefore, no duplicate (D) flag is generated when the duplicate labels
are encountered by the assembler. Nesting allows simpler block building techniques
but requires longer assembly time.

Where practical, the depth of nesting should be limited. Use of distributed NAME
lines and the GO directives may be helpful in restricting levels of nesting (see

3.2.2, and 3.2.3).
3.1.7.1. Physical Nesting

Physical nesting occurs when a procedure is physically located within the bounds
of another procedure. If a procedure is physically contained within another pro-
cedure, the internal procedure is considered to be one level lower than the external
procedure. Procedures may be nested to 62 levels. An internal procedure may be
referenced if a call is made on the external procedure.

Example of Physical Nesting:

START MAIN PROGRAM [Level 1
Start AB Procedure [Level 2
Start XY Procedure [Level 3
Start CD Procedure [.evel 4
END
Start WZ Procedure [Level 4
END
END
END
END

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

- B

Explanation:

Procedures CD and WZ are nested within the XY procedure and the XY procedure
is nested within the AB procedure.

Procedure XY cannot be referenced unless procedure AB is referenced first. Pro-
cedures CD and WZ may not be referenced unless procedure XY is referenced first.

Implied or Logical Nesting

A procedure which is called upon within another is an implied procedure if the
procedure referenced is not nested physically with another procedure. Only the
call line is located within the higher procedure. Implied nesting may be nested
a maximum of 62 levels.

START AB Procedure Level 2

START CD Procedure

I
l
!
ICall Line WZ Procedure Level 3 _:

SECTION: 3 PAGE:

r
I
|
|
Call Line CD Procedure Level 3 _: END START XY Procedure
B [
|
|
|
START WZ Procedure :
-
|
Call Line XY Procedure Level 4_J' END

END

END AB Procedure

< I,

The PROC sample must appear physically before its reference in the main program.

If a GO statement transfers control to an entrance label of another procedure, this
is not considered nesting but is a lateral transfer and does not change levels

(see 3.2.3).
[Levels of Procedures

When procedures are nested, they are considered to have various levels of
hierarchy. The main program is considered Level 1. A procedure nested physically
within the main program is Level 2. A procedure physically nested within a Level
2 procedure is considered to be one level lower, Level 3. Procedures may be
nested down 62 levels.

When a procedure is logically nested within another procedure, it is considered
one level lower than the procedure in which the call line appears.

10

UP-4040
Rev. 2

3.1.8.

UNIVAC 1106/1108

ASSEMBLER section: 3 | pacE:
Example:
START MAIN PROGRAM LEVEL 1
START XY PROC
START AB PROC LEVEL 2
START CD PROC LEVEL 3

END XY PROC

CALL LINE XY PROC LEVEL 4

END CD PROC

END AB PROC

START QQ PROC

START WZ PROC LEVEL 2

CALL LINE XY PROC LEVEL 3 END QQ PROC
CALL LINE QQ PROC LEVEL 3

END WZ PROC

END MAIN PROGRAM

Procedure LLabels

A label is a symbolic representation of some value. A label may be either local or
external. An external label is one which may be referenced by other programs or

procedures. A local label is one whose value is restricted to the program or to the
procedure in which it appears.

Labels appearing in the main program may be referenced by any procedure. Labels
appearing in a procedure normally cannot be referenced by the main program or other
procedures. Nesting of procedures creates a hierarchy of labels. Procedure labels
of one level may not be referenced by a procedure of another level,

An asterisk immediately following a label makes that label available for reference
from a procedure one level higher. A label at the main program level having an
asterisk is externalized and may be referenced by any other program. A label in a

nested procedure may be referenced by one procedure level higher for each asterisk
appended to the label.

11

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

SECTION:

Below is a diagramatic representation of labels appearing in procedures.

Example:

START MAIN PROGRAM

CALL 1 MAJOR

MAJOR* PROC

CALL 2 MIB

MID* PROC

CALL 3 MINOR

MINOR * PROC

M1
M1A **
END
M2
M2A*
END
M3
M3A*
END

END MAIN PROGRAM

Explanation:

PAGE:

As a rule, lower level labels are available only after a call is made on the PROC in

which that label appears.

12

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

SECTION:

The main program may reference PROC MAJOR, but not MID and MINOR.

Label M3 is available to the MINOR, MID, and MAJOR PROC’s but not to the

main program,

[Label M3A is available to all the PROC’s and the main program.
[Label M2 is available to the PROC’s MINOR and MID.

LLabel M2A* is available to the MINOR, MID, and MAJOR PROC’s.
[Label M1 is available only to the MINOR PROC.

Label MIA** is available to the MINOR, MID, and MAJOR PROC’s.

[L.abel M1B*** is available to all PROC’s and the main program.

Because they are physically nested, the main program cannot reference the MID and
MINOR PROC’s.

3.1.8.1.

2. 1.9.

Externalizing Procedure Labels

A label defined within a program may only be referenced within that program. To
make a procedure label available to other programs, it must be equated to an

external label. Externalizing a procedure label is done in the main program.
For example

PAGE:

equates procedure label M3A in the main program to the externalized label M3*
and makes M3A available to other programs. The label M3A must be known to the
main program level,

Forward References

Forward references occur when a-label is referenced prior to being encountered by

the assembler. Forward references also occur when a label has been referenced

whose value is dependent upon values not yet encountered by the assembler.
Forward references are prohibited when using assembler directives.

2°A111111L1A111111i21;1|31|||1|111LII1

The operand A of the RES directive is a forward reference. The value of A will
never be evaluated and is considered undetined.

13

UP-4040
Rev. 2

UNIVAC 1106/1108

SSEMBL _ SECTION: 3 PAGE:

The user is cautioned against basing the generation of code within a procedure
sample on a condition involving a forward reference. Consider a hypothetical MOVE
procedure. The programmer may check if the move from and move to addresses are
the same. On the first pass through the source data, the labels of the from and to
areas may or may not have been defined. On the second pass of the assembler, the
labels will have been defined. The values reached on each pass of the assembler
can be different.

If the procedure sample does choose an error exit on pass one (that is, no generation
of code) and does produce code on pass two, the labels following the call on the
sample are assigned a location counter value on pass one that is different in pass
two. The result is a multiple definition of those labels.

Whenever the assembler gets a different line count on the first or second pass,
multiple definitions of succeeding labels occur and D error flag is set.

The user 1s admonished to take great care when using forward references.
3.1.10. Control Counter on a Procedure

A procedure may be made to generate code under a particular location counter by
specitying the counter on the PROC directive line in this manner:

LABEL A OPERATION

$.(3)y 4P 4y JPIROC, | 1,43 |

The assembler considers this a local control counter declaration. Lines following
the procedure reterence are under the control counter used prior to the procedure

reference.

Example:

I $1(121)|; 1A1[?_LDI__P_1_*|_ - | iPLRtOIcl L]l | . W SN A (R
i y C— E i L o] l L] | | | | | | [I 1 | | S | -
— - I NN SN SR SN N A N N S SN TR U SR SR VO VNS NN NN SN SN S N
E L T, 0 N L. (PR D (N S (N W S R G S S AR I N TN T T T A S
/ E ND

E $;(|]1){r !ALBICJ | lL_iAl_l A9y ITAG,
~ eoon X e G o q b b b 1oq g R L RS A I e
—~ o Bt T] focibo e . A @ p A] | Pt W e

20'C1A1L1L121 T S PR | 1A1D1D1P1*1 (SR, R | U (S () S

14

UP-4040 | UNIVAC 1106/1108
Rev. 2 ASSEMBLER 3

SECTION: PAGE:

Explanation:

Code produced between lines 1 through 7 is under control counter 2

1

Code at lines 8 through 19 is under control counter 1.

Code produced at line 20 by procedure ADDP is under control counter 2.
3.1.11. Hierarchy of Label Definition

As the assembler encounters each label, it tries to evaluate each label as best it
can. It then stores the label and its value in an appropriate table. Since there are
several different tables serving several different functions, the assembler looks
up the definition for any label in a definite predefined order. This can be called a
hierarchy of reference.

While it is possible to define a label in many ways, it is the hierarchy of reference
that brings back one or the other definition.

Even within the same type of structure, hierarchial look-up is employed. For
example, a procedure called SQRT may exist within the user’s library or within

the system library. A call for SQRT causes a reference to be made to (1) the
program library, (2)the user’s library, or (3) the system library, in that order.

3.1.12. Waiting Labels

A label may be affixed to the line of reference to a procedure. Under normal condi-
tions, this label is defined as equal to the value of the current location counter at
the time of the procedure call. It is possible to associate this label with a line
within the procedure. This is done by coding an asterisk (*) alone in the label
field of that particular line in the procedure. The label of the calling line 1s pro-
cessed exactly as though it had appeared in place of the asterisk except that it 1s
defined at the level of the reference line on which it appeared.

Example:
e e e ——— e —— e

®

R . LI NEEN R EEENE N N
11111T1L|E1M1 | LLLxl(l]l'lli)i'14_1’1’111]L A I A
*
NERRE.IEREERBRE. AN I IR I I G I I I
A P .| lEiNlDl e ol 4 @ 4.9 1 1% 4 ¢ ¥ 4 4 7 1% g 0 B N
R AM X 1,4 R DR SRR NN

P 4 1 1 1L|A [| 1171, RlAlML | | ey ¥ 3 n Kk F & 4 |

In this example, RAM is the address of the J line. If this line had not included the
asterisk in the label field, RAM would have been the address of the TLEM line.

UP-4040
Rev. 2

UNIVAC 1106/1108

ASSEMBLER section: o | pace:
3.1.13. Permanency of LLabel Definition
Essentially the duration of a label definition is dependent on:
B The frequency with which a label is redefined.
B The length of time the label exists.
The trequency of redefinition is a function of the application:
] LABEL A OPERATION A OPERAND
CloiulNlTl 1 | L1 |Dl,01 | 1110;__]'1 1+| le_(_)__J_U_Lﬂ_L_Tl T, e Ll | | | A SO S
COUNT 1is redefined for each line of code.
W RS U (RN (W, (SRR, | SRR ‘lillllll_L]tlIll_ltlllllillllllll
coumNnrt ., |96, ,1,0 ,,, CALL, ALPHA [BETA ,GAMMAl ,
The duration of any definition of the label COUNT is dependent on the CALL and
any subcalls CALL may include.
The existence of a label is dependent on both its physical and logical localities.
If a label is confined to a procedure, it is available only during the subassembly
of that procedure. While a label may be physically confined to any assembly or
subassembly, an appended asterisk may flag it to be available one level higher.
This makes the definition more durable or permanent. Therefore, labels confined
to a procedure may be defined differently each time the procedure is called, but
should not be redefined if their logical locality implies permanence. For example:
CiAiLILi*tllllPJRlolcllllllilllill1li S Ml et LR (SN
VALUE, | o o I+ CAL LT V) e b Ty
| | | | 1] 1 | D) J EI NI Dl 1] | | |] I | | | | | |] | 1. | | | |] | |

Multiple calls on the above procedure would result in an error since VALUE is
ambiguously redefined.

16

UP-4040 UNIVAC 1106/1108

ReV. 2 ASSEMBLER SECTION: 3 PAGE:
3.1.14. Noise Words
Assume that three calls on a procedure are made in succession,
] LABEL % OPERATION A OPERAND
C,ASETl , 6 ADD ,, 6 ,25 TO MAJOR , | L4 3
C.ASE 2 .. (ADDE MAX ,TO MAJOR~+3 | | E 1
CLAISLE13I ho iAlDIDIEL | i1L3L lTloi !MlllNioiRi"t]lOL 1 i

The word TO is a noise word which is included to improve the readability of the
line. It nust be equated to 0 prior to using it in the call. Each such noise word
is counted as a parameter; in these examples, it is the unused field CT(2,1).

3.2 “COMPLEX PROCEDURES

3.2.1. DO Directive, DO

The DO directive in the assembler is a powerful tool which, when used within
procedures, provides great flexibility and power.

The format of a DO line is:
LABEL 1 DO EXPRESSION , LABEL2 OPERATION OPERAND

The comma divides the DO line into two parts:

(1) the determinant: LABELI1 DO EXPRESSION

(2) the DO-item: LABELZ OPERATION OPERAND

The expression following the DO directive determines how many times the DO-item
is generated. LABEL1 is optional; if used, LABEL1 serves as a counter reference

reflecting the current number of times the DO-item has been executed.

The DO-item may be any symbolic line of coding. The DO-item may contain another
DO directive, nested down to eight levels.

Example of a simple DO:-

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

SECTION:

PAGE:

18

As each +A is generated, the value of the label A is increased by +1 until 5 DO-i1tems
are generated.

All expressions appearing in the determinant must be defined. All undefined expres-
sions are 0 until they are defined. If, for example, the determinant A DO TAG 1is
written and TAG has not been defined, the assembler reads A DO 0. A line count
is not assigned and the DO is not executed. The DO count must be defined before
the DO directive is encountered.

3.2.1.1. Conditiasal DO

The operators <=> are relational operators and generate the values 0 or 1. If the
relationship between two expressions is true, the value of the expression is 1.
If false, the value is 0.

The expressions employed in the determinant have, to this point, been simple. A
more complex expression would be a conditional DO:

LABEL A OPERATION A OPERAND

Q1 T T B D 0| A =]1 L7 IA]_DIDI 4 1T101 1M1||N101R1

A0 A

If A is 1, then by substitution 1=1. Since the relation is true, the value 1 is sub-
stituted for the expression. The result is equivalent to:

The DE-Dien weuld e eremted snes,

The following move procedure illustrates the conditional DO. The procedure will
move data from one area to another or initialize any given area with any given
constant.

Call line for MV PROC has five fields. The fifth field has two subfields.

| 1M101V1E1Ft]121 l | IW_LOLRIDISl 1T|0l lwIEII__lT

IE 1F1R10|hm

8 Skl | ll ENlPlUlTl'lzl

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER _ . | _ sEcTION: .
] LABEL & OPERATION A OPERAND g
MY, + v+ PRIOC, | | oo Lo 5 b i 1§ f.b 1 @ 3 ¥
MO, V.E;*, + NNAIME, 4T, | | | | | L & 0 F & 0 i aadieall R die ol o g LT]
ZER,O* |, NAME, 0, | | | | | A U R B N B B T R N N B S S L 1
ooy LA A G MY G) D) b g
D Ol , MV Si., 12)1>40 A A 1,2],,0 MV (3 2 1.4
L 1ovo0oporor LA A, MYC]0 0 MIVGS L T) b
L o1 Py o MviG5,,,2)01>,0 4, (AA 131,00, MYLGE5,120) 00004
Loy bRy 00, MVIGO)y V4 L e
1[1]lIilBlTi,llIAIOI'101'1*1113LJllIJ_lll S (I S L 1 1
E ND
The DO in lines 5 and 7 check to see if g paraméter was supplied. In this case,
the parameter specifies an index: the procedure is checking to see if the address
was indexed. If it was, it would add the value of the index to the address to
achieve the proper etfective address. The paraform MV(0,1) references the sub-
field attached to the operation.
Note that unspecified subfields of a given field are automatically assigned a
value of zero. In this example, the third field, WRITE, is such a case. Therefore,
in line 5 of the coding MV(3,2)>0 is false because lack of the subfield for WRITE
reduces the value to 0, and 0 is not greater than 0.
LABELA may not be used as the expression value in the determinant.
L b ¥ o ok & 9 % Loy w3 i & ¢ % 4 og d Eoa g g b g 4 % B b ¥ B 5 @ 6 T 4 Y 3 F 3
E, PO, (L ARRIAY, OB >0 4, AAL AT 2], MEN
This example cannot be executed. The value for E is initially 0 and the item
ARRAY1,0 does not exist. If written as follows, however,
I_lltllll!|llliilllllLli_lllllJ_Iltllllll!ll
E, b0, ,1,,, DO L ARRAY G END) >0, (AA, A2, MIEIN

the line of coding can be executed since ARRAY (1,1) is referenced.

19

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER RTINSO

3.2.2. The NAME Directive, NAME
The NAME directive has ti.ree functions:
(1) It provides a local reference point within a given procedure or function.
(2) It acts as an alternate entrance into the procedure or function.

(3) It may give a value to the procedure. It must be located between the PROC or
FUNC line and its associa‘ed END line.

When assigning a value, the value is written as the operand of the NAME line and
becomes meaningful as the Oth subfield, Oth field if and only if the procedure is
entered at this name line. If such a value exists, this counts as an additional field
to the procedure. A paratorm may be used to represent this value if the NAME line
is within a nested procedure. Additional subfields may be added to this Oth field at

the time of the call.

Example:

] LABEL A OPERATION A OPERAND \ COM
LAS BB, ™, 4 4P ROC! ¢ ¢ 3y ¢ 300 5.4 ol Gl LB BN AR EEAERE EWE REEN X B
Zilo Aai ™ o sNABME] . : P oawa b i W EERE e T R EE L - e
S JHENEBEEEE T -EEEE T @i nac-inamMm It e hm ro oy orman
4 WEN EE: YT - BEEN 17 T Tl A MmN e Ry NI e
el g a5 380, 5 1 4 4 EYE WRONT TP U S T O G D 2% JE TN (N T SO TR S, (R
6.1E.A.R.* MAME . . 4 o o ¢ ool 0o et g R R EEEETE TS EEEE
Lol i .5 9 5 iSqks 5 ¢ 1 i BB (Ve) 10y S BB 0.0 0)L, 8B Bl D10, R T L T

B NAMEL o e £ § 0 € F Vo e e T ARV, S S O

¢ s B o T RO TR e Y R R Y i i
J....lJ._ElN_IEI_L.I_.L_rl.L.lil._'L.Irl g g e g g G p g e g i b g g g g ¥ 4 F 3

A S COR [A ! S W S (B S R bt 4 F G SE g T B S | T R e, S 1L S | W YO R T L .

O CIPG, B . LI S I S S S (I [| Loeabee ol B oefo ool g o o . T SR T [N RS | . T o OB ST
qCA L L1, S:E.E 1 & o V1:0.: C8&T. 11,7, ;DO:G, *A4.3l sy i | i B §.% % RN B RN
. ciAlLllel ISIAIWI"‘SI | i1i61' lclAlTi l.ll?I IDIOIGI | 1413| ol R, W (A (. N R . I (TR D | (B e e |

B Chl L3 EBAR. B, A o o 0 [4 4 TATIN TN PR T R T

Explanation:

Line 13 calls the SEE PROC. The subfields in the operand field are SEE (1,1),
SEE (1,2); SEE (2,1), SEE (3,1), and SEE (4,1). The subfields refer to 16, CAT,
17, DOG, * 43, respectively. These values are substituted for corresponding para-
forms in the procedure and lines 3 and 4 become:

LA 16, CAT, 0, 0

TLE 17, DOG

PAGE:

20

UP-4040
Rev. 2

UNIVAC 1106/1108 3
ASSEMBLER S o hee.

SEE (0,0) and SEE (0,1) equal O since the entrance was not made at the NAME line.
Lines 6 and 7 are not processed,

Line 14 calls the SAW PROC. The values SEE (0,1), SEE (1,1), SEE (1,2), SEE (2,1),
SEE (3,1) and SEE (4,1) referto 5, 16, CAT, 17, DOG and 43, respectively. The
paraform SEE (0,1) is 5 as 5 is the second subfield of the 0th field. SEE (0,0)
references the NAME line and its value is 2. Lines 3 and 4 become:

LA 16, CAT, 2, 5
LA L s DOG

[Lines 6 and 7 are not processed.

[Line 15 calls the EAR PROC. This causes entrance at the NAME line labeled EAR.
SEE (0,0) 1s 4, SEE (0,1) is 6, SEE (0,2) is 7, and SEE (1,1) is 16. Line 7 becomes:

SA 16, 4, 6

The DO statement generates no coding.

> v W N

3.2.3. The GO Directive, GO
This directive transters control of the assembler to the line whose label is in its
operand field. This label must be one of the following:
B A label of a NAME directive in the same procedure. If the transter is a forward or
downward one, the label must be asterisked.
B An external label ot a NAME directive of any procedure.
Example:
— = — e TP R
DlolNiCl (N W |PlRlolCl [T S 1 A R (N N S NN N N | | SN D S (NS B SN
by e NAME S L e b g
Dlzl*l N S S N B INEALMlEl l] [1 1 | l N I SR A SN S B | 1 4 & & I 4 i
N T N T O Y Y Dioi |1 IDLolN[CL(loi"lOl)lzlol [y lGLO_{ ouT
S Z CA T
oOuT ™ L |N1AiMIE_L AN I N T N S S U T NN SN NN NN S N S N S N
ILllIllLl[ElNlD_LLllli1|11L111|!IIll!lllll)
| N S N I T l [+ [& ¢ 1 1 | l | B S S S R R { 1 1+ [1 1 | l/
T T T U U N N U U S U T T S N N N TSN Y N TN CHN A A SO SN N NN S Y A

21

UP-4040
Rev. 2

1
2.
3.

10.
1.
12.

- 13,
14.

15,

16.
17,
18.
19.
20,

UNIVAC 1106/1108

ASSEMBLER o) _lsecrion: 3 | eaces

Explanation:

It the program is entered at D1 NAME, the value of DONC (0,0) is 0. The condi-
tional DO directive on line 4 is true and control transfers to OUT.

It the program is entered at D2 NAME, the value of DONC (0,0) is 1 and the con-
ditional DO directive on line 4 is executed (conditional DO directive is talse). The
SZ CAT 1instruction on line 5 is executed.

The GO directs the assembler to different sections of sample code to be assembled.
The sections of code referenced need not be in the procedure currently being
executed. The subassembly process is avoided, thereby substantially reducing
assembly time.

Example:
] LABEL A OPERATION A OPERAND
AIBI*I | - IPI.BIOICJ | T S [, [| i L | | i cillicact | | | S [| i Lo % ..
] | 1 | | | IDJOI l 1 | lxl:_L]l S LG!OI_ JCIOINLTJ]L b= 01P1T1| lolNl]i I

| I | L] | iDlOI | | lxl:lzl | . | IGIOI lCIOJNJTIZL l |OJ_P1T1|101N121

o

* * k| %
T TR IR O T T Bl L I B B R P A I IR AR AR R AR AR TTE cT ha e X

fm—

| | |] . IEINID! S L1 | 1 |] | I | | |] | I | | 1 I I\ | | | | i 5 |
*
AIBIIII | | | 1Pl Rlolcl | | 1 | I] | | | l | | I |] |] [] | 1 | | ! L |
% * | *
]] |] } . : I | i l | l | | | | | | I l | | R | | i | | | | l | | | | | 1 | |
* * x *
i | ! | i | |] | I]] | | | |] | 1 | | 1 | | |] | | | I | 1 | | | i | |
CLON,T,1,*, N AM|E ., T HI S |C0DE ,CAN, ,BIE

ey gt e REFERENCED BY, THE , . . . 44
4SSt -, CURRENT PROCEDURE | | | |
2 JEND| ., AND, AB, PROCEDURIE, |\ . 1 . + i,
AiBlzl*l] IPIRIO Cl Pk oo ke § 4 F F] T BN T N SO . N . el 0 4 F]
A A A N i*l*i*l*’ L e b Lo 1o l N TS, I DU T S . W I N . . (S . _—
coNT2* NAMIE, , ,., THI S |CODE ,CAN BIE, , , \ (4 .,
A . A S l*l*l*‘*l L 35 .] lRlEIFlEER EINICJEIDI lBlYi lTHlEl | T N S .

Lo ey g ey G URREINT, PROCEDUIRE | |

E ND .. AND AB PROCEDURE

NOTE: The four asterisks appearing alone on a line (*¥*#¥) represent lines of miscellaneous coding.

22

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

3

SECTION:

PAGE:

A call on procedure AB can optionally develop code from its own sample or that of
AB1 or AB2. The GO does not cause subassembly. If the AB were rewritten as

1 LABEL A OPERATION A OPERAND
A/B* o PROIC b e ey
L i EREEERE TSR EBEEFEENEEENRENRESENER
* ® w w
N TR T T NS MO VOO NN N TN T OO N VO T N O OO A baliadl ol il
X =i | . CO T, 1
L1 PO L X =2 e oNT 2 L
L PO X3 e (END U RETURING
| i l*l*l*l*[_l L.] }] i T P P 1 I T . . .
I A A I R I A T I A A A A A I B B I A A |

then CONT1 or CONT2 would cause subassembly. The effect is the same, but the
time for assembly is longer. The return line is included because termination of
subassembly is desired at the return point. The return DO-line assumes X is never
0 or negative.

3.2.4. Procedure Modes

Procedures can be developed in any one of three modes: simple, generative, or
interpretative.

3.2.4.1. Simple Mode

The simple mode occurs when the object procedure developed is equivalent to the
object procedure declared.

Simple Mode Procedure:

‘ﬁhﬁfr_ﬁ_ﬁl I—_ﬁ_m‘“‘_##f#-_-““ﬁm__ﬂ#’ﬂ_“H““__“_““_ﬁhﬁﬂﬂﬂﬂﬂ__M#
S W U O N I W O W O O AR Y O B O B B A O B
| S | [PIRIOLCL e N Y | D . A | |] |
o JTRA 2 TR G V)
CLAAL 2, O Rl(l]l'lzl)l o b
i] i SlALl | Lllzl'ICIT'R[(III’l][)l § L | .

Lo IENRD e b v b
S . | |C1TIR’ 1 [TIAJLILLYI"i l] l3l | t ST l L 1
_ e — ———— T — e ————

The above PROC declares and generates three lines of code which add a given
value to a given counter,.

23

UP-4040
Rev. 2

UNIVAC 1106/1108

ASSEMBLER

5.2.9,.2,

Generative Mode

SECTION:

3

PAGE:

The generative mode occurs when the object procedure developed is a multiple ol

the object procedure declared.

Generative Mode Procedure:

LABEL A OPERATION OPERAND A
Gl 2 w w 3oo IR o e 3 4 £ L S P e e A e i i
s B LCT.": ¢« &+ |F,ROEC . - . 4 ; b e e TR RN ¢

T EEREEEERE R . PN, T Ny, B EEEEEEN i

RN ERENER ST RENL" M I 1 Ny firmaOre BEEREREEIERE R

S A 12 SUBCT(1 ., 1.)

e aer g oo (BB o0 g0 0 o Fa g vy v g by g w gov g s oy
=Q. i id i g 10 4 i G TiR L S UBGT CTiRICQiali) i iCiT R 1Q4, i2,) i
Lo oo o igoq g o IBMNB 00 0 o o Lo g v 0 g g 1oy O R BE TR BN B B Lok el
ICIAILLLJ'IJ oo i PR Tl on Tl ksl Yl o3y T3 0k bips o8] 0,0, T:Ak s 2 ¢ 4 T

The call line supplies three fields; three lines of code are generated for each.

3.2.4.3. Interpretative Mode
The interpretative mode occurs when the object procedure declared interprets
the fields given and generates code based on the interpretation.
Interpretative Mode Procedure:
PL . T | iPIRiOICI' =S f ot f. ¥ F §] I (. S S (I S G N A A | S S S . e N
SIAI“Fi | I.NIAIMIEI 10111 N R) (S (. 1) W, (N)X | S [N N . - U | N
LﬂAl*l IINIAiMlEl IOIIIOI S (W - SO SR S) | TN WO S . T (S SR N SO | S T
SlNLAi*l ENIAIMLEi 10121 | CYRRTL IR SO | TS . A . T | O S S N T T el ol
| $ F.OR M e eL LT\ 11,08 NS, T.R. FORMAT
L 1 1 1 1|i$1 L IPI(IOI'lol)IP[(Lp|'l1l)l+iP!(I]LFL4I) ’IPI(I]I'III)I-I112 Rl P71
bt b L b b] 'IPI(I11'J3I)J'121*|P|(I]I' I*I3I)l+lpl(]1'1*121)1'1P1(111f 21)1 R
o i i JEND G o b F o 8 b G g v b o gow b Fom L T S S O T O (I b Bl 4
T O NI R, IR SR | l R A R S S . LI O S S, R S | N | I S, W | R | L b

The six fields in the I$ form reference line represent the f, j, a, x, h-i, and m
fields, respectively. It can be seen that, by interpretation, one procedure may

define a group of instructions of the same general type.

24

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

3.4, SPECIAL APPLICATIONS

St L

Instruction Word Generation

SEC TIQMS 3 PAGE:

An example of how a normal instruction word may be generated using a procedure
1s shown here for the LA instruction.

LLolAlol | 1P1Rlolc | 1]1'J]l | | | | | —_—|] | B - . T | | | | |]]] | | | - 1 .|
LAY | o NAME] | 10V,0, | 4 TR R P . R EREEE NN NN NN
Fl. 111 (1 JFIOIRM| | 161,14, 14,,/4,,.12,,;0,6, | | | | | AT NI e
TR . e I 1L101AtD1(101ftol)juLlOlAlDl(iow111)1+1L10|A401(t]p14 Lt ide 1
LOA D, (1, (1]) = 1,2, LOAD([1,,3.),,,
b Bof 0.1 J f.d (2, "L OAD (1],,%3,)+ LOAD v 20 ,,L0ADI(T,,,2))
L 1 1 1 1EIND, I IR N R EEEY SWEREERENR BN
Sk - _-_v—’/\/—-'" e il e i TS - e

. P L

B One field is expected and one word will be generated.

@ LOAD (0,0) is the value on the NAME line which is the function code of the

LA insfruction.

@ LOAD (0,1) and LOAD (1,4) are the two arbitrary positions in which the]

designator may be coded.

B LOAD (1,1) is the expected a designation.

@ LOAD (1,3) is the index designation. LOAD (1,*3) will set a 0 or 1 bit in the
incrementation designator field (h field).

@ LOAD (1,2) is the u portion of the instruction. LOAD (1,*2) will set a 0 or 1
bit in the indirect addressing field (i field).

ARRAY Generation

The following test describes an assembler procedure which generates an array having
one, two, or three dimensions. Each element in the array may be one or more words.
Reference to the procedure, named ARRAY, generates an array with the label and
dimensions specified, in a manner analogous to the DIMENSION statement in

FORTRAN.

Following generation of an array in the assembler code, reference may be made to
elements of the array by suffixing the array name with appropriate subscripts

enclosed in parentheses.

Arrays may be generated with the following procedure call line format:

label ARRAY columns,rows,pages words-per-element

25

UP-4040
Rev. 2

10.
11.

12,

13.
14.
19.
16.
V1.

18.
19.

20.

1L

UNIVAC 1106/1108

ASSEMBLER

SECTION:

PAGE:

where label is the name to be given to the array. The first field contains three sub-
tields: columns, rows, and pages which are expressions with integer values for each

dimension. Words-per-element is an integer value expression specifying the number
of words for each element in the array. If this parameter is omitted, words-per-
element is assumed to be 1. The number of parameters on the first parameter list

determines the number of dimensions.

A sample ARRAY procedure follows:

AT s : 5 oy .
LABEL A OPERATION A OPERAND A COMMENTS
TR T e R TR LT T T e e YR T
N NI K R . I T T I T L T L
KCVD)yoy o \EQUS oy 0) ey 4 NT AL (DEF L NLT,LOIN PAGE (COUINTER 1
Sy 3 b g po I AMEBG b o) § B e e e] g e e dofaf i gl Gl g g 3 B G 4 L F g o Fopow B
B p e s PR e T el e s T DAY DEE R N R SO s s i
Yoa oo g fe b IR MeBr o s by 1 ¢ 0 5 (e e p o l soe g e gy e b g 2% 4 & §-9 4 3] o 9 3 6 % 5 4
bl i 5 5 700 BT . e oow o 1w LT aaE BEELELTAMN, B LN €0mT 5l o
R i b gt DDA . ity Tt ons: S ope i b N s . e B i e L 2R % o W e s ot T
TIPEEEPREL " TEEREY . T i oanTEE. - R FEUR TR TE A TR T TR Y Y
L eopop o o BB o oa g o GRS o b LG 0 e i LT) e GRS Y g g Ty o e T
i s e BB . A e e B AL Je d A S e Kl REE AT s s op e
T T W S 1 (| 1itDptil P ey fﬂl2ﬁﬂlh}ﬁil’jk EE§|IPJ1%‘”1”'J}LI e B Ill Y Y S N S (e
THEAMITTET... WEETR.?F FRWWYTrRTOTr oW Y R T
TS TR M aTLIERY o Y more . L EETEE
bl Lde e o u B0 5 ¢ ¢ o LT T ey (BB Pl NS H B] N ER RO JEGY, NTLE R
fa b b i e w108y g s ogopoa P e g2 i i da LD e 5610 ¥y oo IBMORE: (ROW ST ;o0 o0 ¢ 4 g
B, 1) e o w5 oo B, o v oy KUY =0, o B, PAIGE, F LN 1, SHEDINCR (KOMW ;E00,HTER,
G f g b 4 b e IO o § op o og Pl 8 bl S el B g w0816 i Zi g cle BOIRIE DB AGIES: yor b n g
L Y fa i FEREE e d bl y ot p g i L el i v i Ly Ed by bd v g by O A O Gl Gl
b boe 5 g JE B e s et aell o g b £op T T T A 10 I NI e O | AT TG T N WU T TR 0T T Y O T O
Exclanation:
The asterisk in column 1 of line 19 is a waiting label. Line 19 is assigned the label
ot the call line.
In most cases, the RES directive should be used as in lines 9, 10, and 11. Another
way of coding the three generating lines is presented below.
oo oo o B0 1P|(!_T;}|=..11 e ieilpd et e i g gl € s lide T4 &8 i Gl ot e fe 3
g g oao g g o g p AE: wogo w fenug PRCED § e, PN YR G P O L0 PRI PR G 0 S0 AP S G0 A" Y G 0 I AR A
ot e ettt I e g o s BEL Ve By e ohadind 00V ns s delal oY s L TR b sk o8 o8 ™03 oY 0 L a0
A reference to this procedure would appear as:
B F Lok ik bt oo g o g g g b g oo gop g g i 3§ g g g g g g
Wo oo 00 v oig g IARRAY:) Sreldy ooy o by |

26

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

SECTION:

e

3 . PAGE:

A 3 by 4 array would be generated with element storage by row, for example,
consecutive cells of main storage would contain the three columnar positions ot
row 1 tollowed by the three columnar positions of row 2, and so on, through row 4.

For purposes of demonstration, the procedure may be coded to insert the product ot

the row and column indexes of each element in each element. The preceding line

would produce the following array, assuming generation under a location counter
with the initial value 0100:

[T AT

s e

ADDRESS | VALUE ADDRESS | VALUE

~ oooto0 | 1 | oo0106 | 3 |
000101 2 000107 5
000102 3 000110 9
000103 2 000111 4
000104 4 000112 3
000105 6 000113 2

If visualized as a matrix, the logical element arrangement would be as follows:

ROWS

l COLUMNS

1 2] 3
— ot
2 4 | 6

L
3 6 9
[4 8 | 12

The effect of the procedure is to equate a series of values of a location counter

with a series of subscripted labels. Using such a label in an assembler instruction
or expression causes the subscripted label to be replaced by the location of the
array element it specifies.

Based on the array shown above, here are examples ot references to a generated

array:

LABEL
A (1,2)
A (2,3)
A (3,4)

VALUE (its address)
000103
000107
000113

27

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER 3

An actual usage might be:

Bl) | el] |] | l_AJR_lRIAin

Assuming generation under a location counter with the initial value 0200 and the
vector expressed in each element, the following could be produced:

. ADDRESS | VALUE I
000200 1
000202 2
000204 3
000206 l 4 '

| il

[Locations 0201, 0203, 0205, and 0207 are the second words of each element. It is
important to note that for an array with multiword elements, a reference to one of
the subscripted labels produces the address of the leftmost (most significant) word
of the element. Here are examples of references to this array:

LABEL VALUE (its address)
Bm | o0 |
B(3) 000204
B(@3) + 1 000205
l L]

SECTION: PAGE:

28

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

SECTION:

PAGE:

3.3.3. Display Console Linkage

The procedure presented below provides linkage to the display console routine in

the 1106/1108 Operating System. It will display one word and can be used to

indicate errors.

f LABEL A OPERATION A OPERAND
1. TiYLPIEl | 1 lPlRlolcl (1 1 1 1 1 | | | 1+ 3 & {1 | | S
2. | TZ"’vyPE* ,, NAME | , v v v b e e by
3.0 1 1 coro bMWY KITIYIPVESS) o o o
4. 1K1 | L 1 (FOIRM (64, (142, 4018y 1 v ¢ 1 ¢ o 1 Loy
5. K 0, 6., .% +12
6.1 1 1 | coro by 2 L 1 1
7.1 1 1 | Lo L T PE G) gy L 1]
8. L1 1 Lo GENID s b e

m Lines 1 and 2 illustrate that labels and entry points do not conflict.

@ Line 4 contains a FORM directive allowing the programmer to specify the number

of bits to be contained in each field whenever the form is referenced.

For example, the call:

olFlLloi A | 1T1Y]P1El 1 1*’“I(|Il 101F1L101’1)1 | I N N S N S S N | 1

would generate the expanded code:
]‘ OIFILIOE ILIM JI | S I.IJ]I!IKITIYIPIEISI E I N i R RS N IR AN S S — I
2' Kl | L 1F10 RIMI A |6tri]_tzlr 11 8! | e P b SERE (NS] - U A (I |
3-, L | Ky (1 :0|;|6|:1$1+ 2, | N, e O RS RO N e LN Bee, M. ok
4. L | |_-l| L |$|+121 I R R R A T N R [R N N N R S B Ll
3 + L IthiFLC)|’| . 4y 4T HE PILUS SI1 GN PADS,
6. || | 1 1 W S S W U N R S A B I IZJEIRIOIS IL:EIFLTL LOlFJ lo FILIOI

LLine 3 indicates: display 6 characters from line

£

wt e

29

UP-4040
Rev. 2

Ak e

UNIVAC 1106/1108
ASSEMBLER

SELTIDON:

The relocatable output is (assume location counter is at 000042 when the call

1S made):

: ' T
000042 | 74 | 13 l 13 [00 0 lcy l 001032
060043 | 00 0006 | 000045 |
000044 | 74 04 J 00 [oo 0 lo] 000046
000045 | 000024132124 '

Instruction

PAGE:

K format (6,12,18)

Instruction

- Fieldata B 5 OFLO

The routine can be used to provide a form of trace when the logic of a program is in

question. It 1s a simple matter to install or remove a number of the following calls.

LABEL A OPERATION 5 OPERAND
TiYiplEl Ih+_1_("1P101I1NlTJ]JL’1)l I 1 | R oo I] LSl S8 L1 |
TJYlpiEJ T - | |+Jt(‘i 1P101|1"Ni T121’l)1] | J A | 1 | | 1 | l | |
TJYIPIEL | 1 | l+1(li 1P10II1N1T13I’1)J I] | | | 1] l 1 I |] | |
TlYlijl - | l-ELE(I1I IPLOillNth‘dL’l) l I A S |- —-— i | | |

3.3.4. Print Linkage PROC

As an alternative to using the display console, the system provides the print
linkage PROC tor using the printer. It is used as follows:

| L | 1 L i |]] | | | | 1 [} | 1 | 1 |] | | | | 1 | i | 1 1 ! B e N, P | | |
1 | i | | F$ERLIINETI | L{I 101F|L01l|}“l]| | ot lTlH!El lsIEICIOINlD| JPIAiRlﬁlMtELTIEJRt ICIAIUISJEISI |
O A) (S | |F$|R!l1N|Ti i iilrlploiilﬂiTLll)l'lll | el |P|R|[1N+T|1INI61 IU1FI |0|N|El lwsoxﬁlol'l A W N R O O
1 | L1 | L 1 | R (RIS 0 T T R R LR O o e g e e i e gl e]
Sometimes a blank line is required; the following PROC provides it.
| |] | | L L | | 1 1 1A PSR NN | WM ey | L | l Jiis k. EHT S | | | 1 | I | | | 1 | | 1 Lok || | e | | PR TR 1 P (e l | | RN | | | | i | i i | H i
LlliNLErS1 [ic:) 1E!QIU| L1 :01 Bl 4] E W O R IR)) O | I | T [PP i (A (et [Eie Lo | | o [l (i it (S MR il WO | | SR (AR (e o N [et S | |] PN i P i] SR | R
Sikde s 1 2 3 B ME g S le bp g P ¥ A s Y i BBl BT E S PR Rl R F T o b el e L G B B Ber
BlLIAIH1K|*l | IPIRIOlcl PO] (I T R J | SIS o) S S AN A | J_l oGRS R G R S | bl o ool of l Ereailf T -1 | .: | E CU Oy [[YN (I N R R
Vit Comipe R | L=l |P1$|R1||N:T1 |{ L‘1151B|5!Blﬁ|61’!}i'31|r!BiL[A1N1K|(|I1!111]1 l'1513|L1A!Nll<i[l]i:'l”)li|N:DI1LCIA|TIE15! :TIHlEl | S (R O e P |
| | Y ARG oS PRI Nt | EINI[JI | | LJ_] i | 1 R | | I] | | | NS e S B N O 3 JslﬂlUIM!BlEJRI |01 Fl |LI’IN|Etsl lTJOJ |BIEI -SIKllJPLPLEtDI
The call
A B N) S e e bece oo b e BB 1 9§ | el b ded o oof 8§ 3 | W
clAtlel1l 1 | lBlL|A1NlKI [| 1L1|1N1EJ | | | | | D o | | i | | |]

30

UP-4040
Rev. 2

Dt

UNIVAC 1106/1108
ASSEMBLER

SECTION:

causes the printer to skip one line and the following call

. O P N Y

|

1

|

] |

|

| e |

SR LLE INE. ML T A e I

P AGE:

CASE 2

causes the printer to skip two lines. The words LINE and LINES are noise words

BLANSK

used to improve readability.

The labels LINES a_nd LINE ate equated to values to prevent undefined flags from

5

L1 NES

occurring and to provide the proper expressions in line 4. In CASE1, BLANK (1,1)

that is, LINE provides a value of 1 and in CASE?2, BLANK (1,1) references 2.

One line of blanks is printed. In CASE2, the constant 2 causes an extra line to be
skipped after printing the blank line.

Example of a Pr_ocedure Listing

The following listing from an 1106/1108 assembly includes examples of procedure

structure, nested procedures, and procedure references. The coding produced by

reference to M PROC determines the largest or smallest value in a series of values.

Each value is assumed to be represented in a 36-bit signed word. Following the
listing is an explanation of the action taken by the assembler while processing

this coding.

000001 000000

000002

000003

000004

000005

000006

000007

000008

000009

000010

000011

000012

000013

000014 001000
001001
001002
001003
001004

000015 001005
001006
001007
001010
001011

000016
001012

000000010000

10
54
10
54
10
10
95
10

59
10

000000000000
000000000014

00
00

00

00
00
00
00
00

00
00

04
04

04
04
04
04
04
04

04
04

01
01
01
00
00
01
01
01

00
00

O

0 D By 2

o O

010000
010002

010002
001012
001012
010000
010002
010002

001012
001012

MAX*
MIN*

M1*

RES 01000~$
PROC

NAME
NAME

()
1

PROC 0

DO
DO
LA
END
LA
DO

-~ END

EQU
MAX

MIN

END

M(0,0)=0 , TLE M(1,1), M(1+2,1),M(1+2,2)

M(0,0)=1 TG M(1,1), M(1+2,1),M(1+2,2)
M(1,1),M(1+2,1),M(1+2,2)

M(1,1),M(2,1),M(2,2)
M—-3b, M1

010000
18 .1 1L+2.1 £1d)

16 Lk La2 1 (12)

31

UP-4040
Rev. 2

UNIVAC 1106/1108

ASSEMBLER section: S | paces
Line 1 sets the controlling location counter to 1000g.
Lines 2 the body of the procedures; these lines are temporarily stored by the
thru 12 assembler for later reference.

LLine 13

Line 14

Line 2,

Line 10,

[Line 11

LLine 5,

LLine 6

Line 7

Line &

LLine 9

Line 11

[Line 12

[Line 15

equates L to the value 10,0004.

is a reference line to PROC M. It contains four fields. List 1 has one
subfield; fields 2 and 3 each have two subfields; field 4 has one subfield,

the literal 12. Coding produced by the reference to the procedure is shown
to the left of the reference (addresses 001000-001004).

the first line of M PROC, is referred to through MAX NAME 0, line 3.

the first line of M PROC to produce coding, creates the first instruction at
address 001000. The operand entries of this instruction are determined by
subfields supplied by the reference on line 14.

references the nested procedure M1; the number of references to M1 PROC
is determined by the expression M-3.

the first line of M1 PROC, has a 0 in the operand field indicating that
no list 1s to be submitted to M1 when it is referenced.

produces a TLE instruction (54) at address 001001 since MAX was the
entry to PROC M. The counter I of the DO line (line 11) within M PROC

advances the field number and thus accesses the appropriate subfield for
use in the compare instructions.

is skipped on this iteration because the condition M(0,0)=1 was not met.

produces a LA (10) instruction at address 001002 in the same manner as
line 10.

terminates this iteration of M1 PROC.

now references M1 PROC for the second iteration. Lines 5 through 9 are
executed as above.

terminates M PROC. Assembly continues at line 15,

is another reference to M PROC. The execution is identical except that
line 6 is skipped and line 7 is executed.

Line 16 terminates the assembly or program.

32

UP-4040
Rev. 2

3.4.

UNIVAC 1106/1108
ASSEMBLER

THE FUNCTION DIRECTIVE, FUNC

The function directive is a device within the assembler which saves certain predeter-
mined lines of coding as they are encountered during assembly. When referenced
subsequently during the assembly, a quantity computed according to this coding is
substituted for the reference call within the program.

The FUNC is similar to the PROC in that the lines of coding representing the defini-
tion must precede any call (reference point) and this delineation of code is saved when
encountered. The two differ in that a value is calculated when a function is referenced
and no object lines of coding are ever generated. The function operates entirely at
assembly time and stores its results into the program at this time.

The general rules of definition are similar to those for the PROC directive. A FUNC
directive must start the definition area and the line must be labeled. If the line is to
be an entry point into the function, the label must have an asterisk. The delineation
of code is terminated with an unlabeled END directive which may have an operand.
This operand field is an expression whose evaluation results in substitution of the
proper quantity into the reference point in the program. The FUNC may produce either

single or double precision values depending on the type of operations employed within
the FUNC.

NAME lines with starred labels may be used as alternate entry points into the FUNC.
NAME lines may also be used as local reference points within the FUNC. Forward
references should be avoided.

The coordinate system of input is a single field of n subfields. The reference point is
of the form LABEL (a,b,...,n) where LABEL is the FUNC or NAME line label and
a,b,...,n are input values. This reference point can be found imbedded within an
expression or can be the entire expression itself.

LABEL (0) is meaningful as a paraform if entry to the function is made through a NAME
line. This input value is the operand of the NAME line.

A particular subfield is referenced within a FUNC by writing the FUNC label followed

by one expression enclosed in parentheses. This expression specifies the ordinal
number of the subfield within the field.

Either PROC’s or FUNC’s may be nested withina FUNC provided the procedure is not
a line generating one. They are usually nested so that labels can be redefined at

different levels. All the rules of nesting discussed in paragraph 3.1.7 apply to FUNC.

A typical application of the FUNC directive is the case where a certain average cal-
culation is made throughout the coding. This calculation could be made manually and
is not dependent upon the execution of the object code. Let a be the number of the
first type of object and b its unit price; ¢ is the number of the second type object and
d is its unit price. A mathematical expression to calculate the average price of the
combined number of objects would be:

ab + cd
a + C

Average cost =

SECTION: 3 . PAGE:

33

UP-4040

Rev. 2

UNIVAC 1106/1108

ASSEMBLER e e 4k B
Assume that values of a, b, ¢, and d are known at assembly time to be 5, 10; 8, and
12, respectively. The calculation is as follows:
|
AV GCOS,™ FUINC, b v b b
ATy BEQY AVGEOSICT) "AYIGC0S5IC2))
B (1) 44 (EQIU | , AVG6COS|(3),*AVGCOS|(4,) |
vy vy BQY AGED)EBIGY D)
E QU AVGCOS(]-)+AVC;OS(3J)L
Although the entire expression could be calculated in one step, it is faster and more
expedient to break up the expression into subexpressions and then to combine them.
W S S B B N I B O A R O B N R A R R N Y S S S T
12, B,V G C1O8 .00 :;:1:0.,.8:+11:2,):, . ,:8 6

This line contains the reference which will cause generation of the value at assembly

time.

The following FUNC source code statement includes examples of a FUNC structure,
a nested procedure, and function references. The value produced by reference to
SQRT FUNC 1is the square root of the largest square which is less than or equal to
the parameter provided in the reference. Following the example is an explanation of
the action taken by the assembler while processing this coding.

000001 SQRT* FUNC

000002 A(l) EQU 0

000003 B(1) EQU 0

000004 C* PROC 0

000005 A*(1) EQU B(1)*B(1)

000006 B*(1) EQU B(1)+1

000007 END

000008 D NAME

000009 C

000010 DO SQRT(1)>A(1) , GO D
000011 END B(1)—(SQRT(1)<A(1))-1
000012 00 000000 000000000010 + SQRT (64)

000013 000001 000000000006 + 2*SQRT (13)

000014 000000000000 END

34

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

l.ines 1
thru 11
[Line 12
[Line 1
[dne 4
[Line 23
[.Line 9
L.ine 4
Line 5
[.Line 6
Line 7
[Line 10
[Line 11
Line 13
[Line 14

the function with a nested procedure is temporarily stored by the assembler
for later reference.

if a reference to SQRT FUNC, introduced above. The reference provides
one subfield (64). The object line produced by the reference would contain

an octal value 000 000 000 010.
1S the entrance to the FUNC.

equates a value of 0 to the subscripted label A(1).
equates a value of 0 to the subscripted label B(1).

1s a reference to C PRQC.

1s the entrance of C PROC. The 0 operand expression indicates
that no field is to be submitted to C PROC when referenced.

equates a value to the label A(1). The value produced is a result of the
operand expression, and will be an ascending sequence of squares

(0.*1!47I9:*“:eﬂ)“

equates a value to the label B(1). The value produced is a result of the
operand expression, and will be an ascending sequence of square roots

LI P

il

terminates this iteration of C PROC,

compares the value of the SQRT subfield (64) to the value of A(1). If it is
greater, the GO line will be executed once. Assembly continues at line 8.

Line 8 is a NAME entry point.
Line 9 references C PROC for the second iteration.

If the SQRT parameter value is not greater than the value of A, assembly
continues at line 11.

terminates SQRT FUNC. The operand expression provides the value of
SQRT FUNC for this reference.

1s another reference to SQRT FUNC. The execution is identical. The
object line produced by this reference would contain an octal value

000 000 000 006.

terminates the assembly or program.

SECTION: 3 FAGE:

39

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

Appendix A

SECTION: PAGE:

APPENDIX A. ABBREVIATIONS
AND SYMBOLS

CONVENTIONS

Abbreviations and symbols frequently used in the description of the instruction repertoire
are given below:

Contents of register or address within parentheses.
Complement of contents of register or address.

Absolute value or magnitude.

Subscripts indicate the bit positions involved. A full word is normally not subscripted. Subscripts
are also used to designate octal or decimal notation.

Floating point biased exponent.

Final contents.

Initial contents.

Floating point fixed point part.

j-designated portion.

Function code.

Partial word designator or function code extension.
Arithmetic register designator. In input/output instructions, ‘‘a’’ designates an |1/0 channel.
Arithmetic Register.

Index register designator.

Index register designator in a-field.

Index Register.

Index Register specified by coding X5

UP-4040
Rev. 2

UNIVAC 1106/1108 Appendix A
_ ASSEMBLER , N) | | SECTION: _ PAGE:

Modifier portion of an index register.

Increment portion of an index register.

Same as 1.

Designator specifying an R Register. It is coded ir the a-designator position of an instruction word.
R Register.

R Register specified by coding [5-

The base address of the operand (or the actual operand) as coded in u-field of an instruction.

The effective address or value of the operand after application of indexing and indirect addressing.
Destination address.

Source address.

h-designator of the instruction word. A value of 1 specifies incrementation of an index register.
I-designator of the instruction word. A value of 1 specifies indirect addressing.

Processor State Register.

Logica! product, or logical AND.

Logical sum, or inclusive OR.

Logical difference, or exclusive OR.

Direction of data flow.

UNIVAC 1106/1108 Appendix B

ASSEMBLER

UP-4040
Rev. 2

PAGE:

SECTION:

APPENDIX B. INSTRUCTION REPERTOIRE

Table B-1 lists the 1106/1108 instruction repertoire in function code order. Table B-2 cross-references the mnemonic and

function code.

Function 1108 1106
t ; : S ti ti
oe: (Qctal) Mnemonic Instruction Description @ Exec.u - Exetfu i
- Time Time
{ i in usecs. in psecs.
TS —-—ur-—_—_——-q
00 — - [llegal Code Causes illegal instruction interrupt ~ -
to address 2415
01 0-15 | S, SA Store A (APU 15 1.9
02 0-15 | SN, SNA Store Negative A —-(ArU v 1.5
03 0-15 | SM, SMA Store Magnitude A ((A)|=U 75 1.5
04 D15 | 8§, SR Store R (Ry)PU T 1.5
05 D15 | §Z Store Zero ZEROS>U 8 Lod
06 0-185 | 8§, 85X Store X (X5)PU J5 1.5
07 - == I1legal Code Causes illegal instruction interrupt — -
to address 2418
10 0-17 | L, LA Load A (UrA D 1.5
11 0-17 | LN, LNA Load Negative A —(U)A Ry i< L.
19 0-17 | LM, LMA Load Magnitude A (U)~A J5 1.5
13 0-17 | LNMA Load Negative ~l (U)[|=A 75 1.5
Magnitude A
14 0-17 | A, AA Add To A (A)+(U)>A 75 1.5
15 0-17 | AN, ANA Add Negative To A (A)—(U)>A .75 1.5
16 0-17 | AM, AMA | Add Magnitude To A (AH| (U)=A 15 1.5
17 0-17 | ANM, ANMA| Add Negative Magnitude (A)=| (U)|=A 75 1.5
to A
20 0-17 | AU Add Upper (AH-(U A+l A5 1.5
21 0-17 | ANU Add Negative Upper (A)=(U)>A+1 oA 1
22 =15 | BT Block Transfer (X FuPX +u; repeat K times 2.25+1.5K 3.9+ 3.0K
always always
23 D=17 1L, LR Load R (UPR, T 1.5
24 0-17 [A, AX Add To X (X H(U)PX, 15 1.9
29 0-17 | AN, ANX Add Negative To X (X)=(UPX, e 1.5
26 0-17 | LXM Load X Modifier (UrX, X unchanged 875 1.666
1 7=0 35-18
2~ _ 0=1l7 (L. LX Load X (U)X, 15 1.9
30 0-17 [MI Multiply Integer (Ab (UPA,A+1 2.375 3.666
al 0-17 | MSI Multiply Single Integer (A (U)=A 2,379 3.666
37 0-17 |MF Multiply Fractional (A).(U)>A,A+1 2:375 3.666
33 - - [Ilfegal Code Causes illegal instruction interrupt - -
to address 2418
34 0-17 | DI Divide [nteger (A,A+1)=(UrA; REMAINDER-A+1 10.125 13.950
30 0-17 DSk Divide Single Fractional (A)=(U)A+1 10125 13,990
; A

Table B-1.

Instruction Repertoire (Part 1 of 8)

UP-4040
Rev. 2

UNIVAC 1106/1108

-

Appendix B
ASSEMBLER W) oy ——
Function 1108 1106
Code (Octal) , : oy Execution Execution
Mnemonic Instruction Description ® Time Time
f i in psecs.(D in psec5.®
36 0-17 |DF Divide Fractional (A, A+1)+(U)A; REMAINDER-A+1 10.125 13.950
37 - — IIlegal Code Causes illegal instruction interrupt - -
l to address 241
40 0-17 |OR Logical OR (A) I3 (U)-A+1 W 1.9
41 0-17 | XOR Logical Exclusive OR (A) (U)>A+1 A9 1.5
42 0-17 | AND Logical AND (A) (UPA+1 49 1.5
43 0-17 |MLU Masked Load Upper [(U) EFEJ (R2)] E@ [(A) 75 1.5
(R2) PA+1 .
44 0-17 | TEP Test Even Parity Skip NI if (U) IXY®] (A) have even 2.00 skip 3.00 skip
parity 1.25 NI 2.166 NI
45 0-17 | TOP Test Qdd Parity Skip Ni if (U) (A) have odd 2.00 skip 3.00 skip
parity 1.25 NI 2.166 NI
46 0=17 | LXI Load X Increment (U}»Xa : Xa unchanged 1.00 1.833
35-18 17-0
47 0-17 | TLEM Test Less Than or Skip NI if (U)X(X,) 1.75 skip 3.333 skip
Equal To Modifier 1749 1.00 NI 1.833 NI
TNGM Test Not Greater always (X;) +(X;) > X,
Than Modifier 17-0 35-18 {74
50 0=17 | 1Z£ Test Zero Skip NI if (U)=%0 1.625 skip 3.166 sKip
.875 NI 1.666 NI
o1 0-17 | TNZ Test Nonzero SKip NI if (U0 1.625 skip 3.166 skip
.875 NI 1.666 NI
52 0-17 | TE Test Equal Skip NI if (Ux=(A) 1.625 skip 3.166 skip
.875 NI 1.666 NI
Ha 0-17 | TNE Test Not Equal Skip NI if (UX(A) 1.625 skip 3.166 skip
.875 NI 1.666 NI
54 0-17 | TLE Test Less Than or Equal Skip NI if (U)X(A) 1.625 skip 3.166 skip
TNG Test Not Greater .875 NI 1.66 NI
B9 0-17 | TG Test Greater Skip NI if (U)X(A) 1.625 skip 3.166 skip
.875 NI 1.66 NI
56 0-17 | TW Test Within Range Skip NI if (AX(U)<(A+1) 1.75 Skip 3.33 skip
1.00 NI 1.66 NI
57 0-17 | TNW Test Not Within Range Skip NI if (U)X(A) or (U)>(A+1) 1.75 skip 3.33 skip
1.00 NI 1.66 NI
60 0-17 | TP Test Positive Skip NI if (U), =0 1.50 skip 3.0 skip
40 NI 1.5 NI
61 0-17 | TN Test Negative Skip NI if (u)85=1 1.50 skip 3.0 skip
.79 NJ 1.5 NI
62 0-17 |SE Search Equal Skip NI if (U)=(A), else repeat 2.25+ 75K 3.9+ 1.5K
always always
63 0-17 |SNE Search Not Equal Skip NI if (UX(A), else repeat 2.25+ .75K 3.9+ 1.5K
always always
64 0-17 |SLE Search Less Than or Equal | Skip NI if (U)<(A), else repeat 2,25+ 73K 3.5+ 1.5K
SNG Search Not Greater always always
65 0-17 |SG Search Greater Skip NI if (U)>(A), else repeat 2.25+ .75K 3.9+ 1.5K
always always

Table B-1.

Instruction Repertoire (Part 2 of 8)

UP-4040
Rev. 2

UNIVAC 1106/1108 Appendix B
ASSEMBLER SECTION:
Function 1108 1106
d tal . . . Executio Execution
Code (Octal) Mnemonic Instruction Descrlphon@ cunen :
Time Time
f j in ysecs. @ in psecs.@
66 0-17 | SW Search Within Range Skip NI if (A<(U)X(A+1), else repeat | 2.25+ .75K 3.5+ 1.5K
always always
67 0-17 | SNW Search Not Within Range Skip NI if (U)X(A) or (U>(A+1), 2.25+ .75K 3.9+ 1.0K
else repeat always always
70 @ JGD Jump Greater and Jump to U if (Control Register)ja>01 1.50 jump 3.0 jump
Decrement go to NI if (Control Register).ag 0; .79 NI 1.5 NI
always (Control Register), ~1-
. Ja
Control F&egm’terja
71 00 MSE Mask Search Equal Skip NI if (U) (R2=(A) N® 2.25 + .75K 3.5+ 1.5K
(R2), else repeat always always !
71 01 MSNE Mask Search Not Equal Skip NI'if (U) EX¥® (R2)#(A) 2.25+ .75K 3.5+ 1.5K
(R2), else repeat always always
71 02 MSLE Mask Search Less Than Skip NI if (U) T (R2)<(A) 2.25+ .75K 3.9+ 1.5K
or Equal (R2), else repeat always always
MSNG Mask Search Not Greater
71 03 MSG Mask Search Greater Skip NI if (U) EXX® (R2>(A) IAMW. | 2.25+ .75K 3.5+ 1.5K
(R2), else repeat always always
71 04 MSW Masked Search Within Skip NI if (A) (R2)<(U) 2.25 + .75K 3.5+ 1.5K
Range (R2)X(A+1) EXX® (R2), else repeat | always always
71 05 MSN W Masked Search Not Skip NI if (U) (R2)K(A) 2.25+ .75K 3.5+ 1.5K
Within Range (R2) or (U) (R2>(A+1) EXY®) | always always
(R2), else repeat
71 06 MASL Masked Alphanumeric Skip NI if (U) ENYB (R2)X(A) ™M 2.25+ .75K 3.9+ 1.5K
Search Less Than or (R2), else repeat always always
Greater
i 07 MASG Masked Alphanumeric Skip NI if (U) (R2)>(A) 2.25+ .75K 3.9+ 1.5K
Search Greater (R2), else repeat always always
71 10 DA Double Precision Fixed- (AA+1+ (U, U+1)A A+1 125 3. 167
Point Add
i 11 DAN Double Precision Fixed- (A,A+1)=(U,U+1pA A+l 1.625 3.167
Point Add Negative
71 12 DS Double Store A (A, A+1)>U,U+1 1.50 3.0
71 13 DL Double Load A (U, U+1A, A+ 1.50 3.0
71 14 DLN Double Load Negative A -(U,U+1)~>A A+l 1.50 3.0
71 15 DLM Double Load Magnitude A (U, U+1)|>A A+ 1.50 3.0
71 16 DJZ Double Precision Jump to U if (A,A+1)=%0; go to NI if 1.625 jump 3.167 jump
Jump Zero (A, A+ 10 875 NI 1.667 NI
71 17 DTE Double Precision Test Skip NI if (U,U+1)=(A A+1) 2.375 skip 4.667 skip
Equal 1.625 NI 3.167 NI
P, 00 - Illegal Code Causes illegal instruction interrupt - o
to address 2418
72 01 SLJ Store Location and Jump (P)-BASE ADDRESS MODIFIER 2.125 always 3.83
[BI or BDISU . _; jump to U+l

Table B-1.

Instruction Repertoire (Part 3 of 8)

PAGE:

UP-4040
Rev. 2

UNIVAC 1106/1108

Appendix B

ASSEMBLER SECTION:
Function | 1108 1106
d ; : G s i '
e etal] Mnemonic Instruction Description ® Exer._:uhon Exe?uhon
o Time Time
f i in #secs.(D in #secs.@
72 02 JPS Jump Positive and Shift Jump to U if (A);5=0; go to NI if 1.50 jump 3.0 jump
(A)Bazl; always shift (A) left .79 NI 1.9 a4l
circularly one bit position. always alweys
P&, 03 JNS Jump Negative and Shift Jump to U if (A);s=1; go to NI if 1.50 jump 3.0 jump
(A),=0; always shift (A) left .79 NI 1.5 NI
circularly one bit position always always
72 04 AH Add Halves L e L I Ry o .75 always 1.5 always
(U)I?*O*}Awno
g8, 05 AN H Add Negative Halves (Ao Wi vm PP v 1B hs .75 always 1.5 always
(U]W-G)A'i?mn
72 06 AT Add Thirds (P o i PR Vs 5 3P o f (e 55 .75 always 1.5 always
t(U)2s.127A%35.121(A) 1.0t (U) 420
_.}A'E'I-O
12 07 ANT Add Negative Thirds 7 T TR U e .75 always 1.5 always
(U)oa122As5121(A) o= (U)y 4.0
_}A11-D
72 10 EX Execute Execute the instruction at U .75 always 1.5 always
72 11 ER Execute Return Causes executive return interrupt 1.375 always 2.33 always
to address 242,
72 12 - Illegal Code Causes illegal instruction interrupt = o
to address 241,
72 13 PAIJ Prevent All | /0O Interrupts Prevent all | /0 interrupts and jump .75 always 1.5 always
and Jump to U
72 14 SCN Store Channel Number 1T a=0: CHANNEL NUMBER-U__; A 1.5
If a=1: CHANNEL NUMBER-U,_, and
CPU NUMBER-»Us.,4
72 15 LPS Load Processor State (Uy>Processor State Register d D L9
Register
72 16 LSL Load Storage Limits (USLR 75 1:0
Register
rik 17 — |llegal Code Causes illegal instruction interrupt - —
to address 241
75 00 SSC Single Shift Circular Shift (A) right circularly U places .75 always 1.5 always
73 01 DSC Double Shift Circular Shift (A,A+1) right circularly U places 875 always 1.5 always
73 02 SSL Single Shift Logical Shift (A) right U places; zerofill .75 always 1.5 always
73 03 DSL Double Shift Logical Shift (A,A+1) right U places; zerofill 875 always 1.5 always
73 - 04 SSA Single Shift Algebraic Shift (A) rightU places; signfill .75 always 1.5 always
73 05 DSA Double Shift Algebraic Shift (A A+1) rightl) places; signfill 875 always 1.666
always
73 06 LSC Load Shift and Count (U)y=A, shift (A) left circularly until 1125 2.0
(A)3s7(A);,; NUMBER OF SHIFTS
~A+1 -

Table B-1. |nstruction Repertoire (Part 4 of 8)

PAGE:

UP-4040 UNIVAC 1106/1108

Appendix B
)
Rewv, 2 ASSEMBLER SECTION:
Function 1108 1106
d tal . . L. cuti ecuti
Lode (Oml) Mnemonic Instruction Description @ Exe. cren Ex .u PR
L Time Time
f i in usecs. (D | in ysecs.®
73 07 [L. S Double Load Shift (U, U+1)A A+L; shift (A A+1) left 2.1729 3.830
and Count circularly until (A, A+1)_ #(A,A+1), ;
NUMBER OF SHIFTS>A+2
73 10 LSSC Left Single Shift Circular Shift (A) left circularly U places .75 always 1.5 always
73 11 L'DSC Left Double Shift Circular Shift (A, A+1) left circulariy U places .875 always 1.666
always
73 12 L SSL Left Single Shift Logical Shift (A) left U places; zerofill .75 always 1.5 always
73 13 LDSL Left Double Shift Logical Shift (A, A+1) left U places; zerofill .875 always 1.666
always
72 14 | 1| Inttiate Interprocessor Initiate interprocessor interrupt .75 always -
(a=0 or 1) Interrupt (1108 System
only)
ALRM Alarm Turn on alarm .75 always 1.5 always
(2=104)
EDC Enable Day Clock Enable day clock 75 always 1.5 always
(a=11g)
DDC Disable Day Clock Disable day clock .75 always 1.5 always
(3:125)
73 15 SIL Select Interrupt Locations (aPMSR 75 always 1.5 always
73 16 LER LLoad Channel Select (U),.,2CSR 875 1.666
(a=0) Register
LLA Load [Last Address (U),. 2L AR BI15 1.666
(a=1) Register
73 17 TS Test and Set IT (U)5o=1, interrupt to address 244,; | Alternate 3.166
It (U);,=0, go to NI; always 01~ bank: 1.625
Usg 540 (U)o yunchanged interrupt
875 NI
Same bank: 1.666
2.0 interrupt
2.0 Ni
74 00 i Jump Zero Jump to U if (A)=%0; go to NI if 1.50 jump 3.0 jump
(A0 g9 NI 1.5 NI
always always
74 01 JNZ Jump Nonzero Jump to U if (A£0; go to NI if 1.50 jump 3.0 jump
(AX=£0 75 NI 1.5 NI
always always
74 02 JP Jump Positive Jump to U if (A);,=0; go to NI if 1.50 jump 3.0 jump
(A) ;=1 7O NI 1.5 NJ
always always
74 03 JN Jump Negative Jump to U if (A) =1, go to NI if 1.50 jump 3.0 jump
(A), =0 49 NI 1.5 NI
always always
74 04 JK Jump Keys Jump to U if a=0 or if a=lit select .75 always 1.5 always
J Jump jump indicator; go to NI if neither
1S true
74 05 HKJ Half Keys and Jump Stop if a=0 or if_[a el lit select .75 always 1.5 always
HJ Half Jump stop indicators]#0; on restart or
continuation, jump to U

Table B-1. [nstruction Repertoire (Part 5 of 8)

oA GE:

UP-4040
Rev. 2

PAGE:

UNIVAC 1106/1108 Appendix B
ASSEMBLER SECTION:
Function 1108 1106
{ , , o Execution Execution
Code (Octal) Mnemonic Instruction Descrlphon@ : ;
Time Time
; Y 1 s 5
f i in ysecs.\” | in pusecs. &)
74 06 NOP No Operation Proceed to next instruction .75 always 1.5 always
74 07 AALJ Allow All 1/0 Interrupts Allow all |/Q interrupts and jump .75 always 1.5 always
to U
74 10 JNB Jump No Low Bit Jump to U if (A),=0; go to NI if 1.50 jump 3.0 jump
(A) =1 .75 NI 1.5 NI
always always
74 11 JB Jump Low Bit Jump to U If (A) =1, go to NI if 1.50 jump 3.0 jump
(A),=0 | .75 NI 1.5 NI
always always
74 1.2 JMGI Jump Modifier Greater and Jump to U if (Xa} >0: go to NI if 1.50 jump 3.166 jump
Increment | 17-0 | 75 NI 1.5 NI
(X,) <0; always (X,) + always always
17-0 17-0
(Kz) Ty
F5°1:8 17-0
74 13 L MJ Load Modifier and Jump (P)-BASE ADDRESS MODIFIER B9 always 1.666
| Bl or BDJ>X, - Jump to U always
| 17-0
74 14 JO Jump Qverflow Jump to U if D1 of PSR=1; go to NI 1.50 jump 3.0 jump
1f D1=0 79 NI 1.5 NI
always always
74 15 JNO Jump No Qverflow Jump to Uif D1 of PSR=0; go to NI 1.50 jump 3.0 jump
i =l .79 N! 1.5 NI
always always
74 16 JC Jump Carry Jump to U if DO of PSR=1; go to NI 1.50 jump 3.0 jump
If DO=0 .79 NI 1.9 NI
always always
74 17 JNC Jump No Carry Jump to U if DO of PSR=0; go to NI 1.50 jump 3.0 jump
If DO=1 795 NI 1.5 NI
always always
75 00 LIC Load Input Channel For channel [a BI@ CSR]:(U)~IACR; .75 1.5
set input active; clear input monitor
79 01 LICM Load Input Channel For channel |a [I3 CSR]:(U)%IACR; 75 1.5
and Monitor sel Input active; set input monitor
75 02 HE Jump On Input Channel Jump to U if input active is set for .75 always 1.5 always
Busy channel [a GBI CSRI; go to NI if
Input active is clear
75 03 DIC Disconnect Input Channel | For channel [a BI@ CSR]: clear .75 always 1.5 always
Input active; clear input monitor
75 04 LOC Load Qutput Channel For channel | a _-CSR]:(UHOACR; i 1.5 always
set output active; clear output
monitor; clear external monitor
(1SI only)
75 05 LOCM Load Qutput Channel For channel [a @@ CSRJ:(UOACR; | .75 1.5
and Monitor set output active; set output
monitor; clear external function
(IS only)
7a) 06 JOC Jump On Qutput Jump to U if output active is set for .75 always 1.5 always
Channel Busy channel | 3 EIA_CSR|; go to NI if
output active is clear

Table B-1.

Instruction Repertoire (Part 6 of 8)

UP-4040
Rev. 2

zngSVAC 1106/1108 Appendix B
EMBLER SECTION:

Function 1108 1106
Code (Octal _ , xecution Execution
© Mnemonic Instruction Description ® R ; :

Time Time
f i in psecs. @ | in #secs.@
75 07 DOC Disconnect Qutput For channel [a GBI CSR]: clear .75 always 1.5 always
Channel output active; clear output monitor;
clear external function
7 10 LFC Load Function in For channel [a [CSRl: (UP A0 LD
Channel OACR; set output active (ISl only),
external function, and force external
function; clear output monitor (ISl
only)
75 11 LFCM Load Function in For channel [a OR] CSR]: (U) D 1.0
Channel and Monitor OACR; set output active (1SI only),
external function, force external
function, and output monitor (1Sl
only)
75 12 JFEC - Jump On Function Jump to U if force external function .75 always 1.5 always
in Channel is set for channel [a (OR| CSRJ:
go to NI if force external function
IS clear
79 13 - Illegal Code If guard mode is set, causes guard .75 always. 1.5 always
mode interrupt to address 243g. If
guard mode is not set, same as NOP
19 14 AAC]| Allow All Channel Allow all external interrupts .75 always 1.5 always
External Interrupts
79 15 PACI Prevent Ail Channel Prevent all external interrupts .75 always 1.5 always
External [nterrupts
7o 16 - Illegal Code |If guard mode is set, causes guard
mode interrupt to address 243;. If .75 always 1.5 always
A 17 — Illegal Code guard mode is not set, same as
NOP
76 00 FA Floating Add (AR(U)A; RESIDUE-A+1 1.875 3.0
76 01 FAN Floating Add Negative (A)—(U) >A; RESIDUE-A+1 1.875 3.0
76 02 FM Floating Multiply (A)(U)>A A+1 2.625 4.0
76 03 |FD Floating Divide (A)=(U)>A; REMAINDER-A+1 8.25 @ 11.5
76 04 LI F Load and Unpack |(U)\34_2?—1A?_O, zerofill; (U),s o .75 always 1.5 always
Floating At Lye g SiENTIL
76 i5 LDE Load and Convert To (U);s2A+1,.; INORMALIZED (U)],, | 1.125 2.0
Floating SAFLlog i 1F (U)ge=0, (A)s_ s
NORMALIZING COUNT-A+1,, ,;
If (U),.=1, ones complement of
[(A), ,tNORMALIZING COUNT]~
A+134-2?
76 06 MCDU Magnitude of Characteristic 'I|(A)'I 35_2?—'|(U)|35_2?\—}A+18_0; .75 always 1.5 always
Difference To Upper ZEROS*A+1.5.4
76 07 CDU Characteristic Difference | |(A) 55.55—(U)| 55..,2A+1, o; SIGN .75 always 1.5 always
To Upper Bl LA+ 1ge o
76 10 DFA Double Precision (A,A+1H(U,U+1)=A A+l 2.628 4.5
Floating Add
Table B-1. Instruction Repertoire (Part 7 of 8)

PAGE:

UP-4040
Rev, 2

sl = AR

UNIVAC 1106/1108

Appendix B

ASSEMBLER P
-
Function 1108 1106
Dctal) h _ . ti ecutio
Code (Octal) Mnemaonic Instruction Description® Exe.cu ron Ex -oen
sercucmenssal Time Time
t E in Iusecs.@) in ,usecs.@
76 i1 DFAN Double Precision (AA+L)=(U,U+1)->A,A+1 Z.0db 4,5
Floating Add Negative
76 12 DFM Double Precision (A,A+1)-(U,U+1)A, A+l 4.25 6.667
Floating Multiply
76 13 |DFD Double Precision (A, A+1)=(U,U+1)A, At 1 17.25® 24.0®
Floating Divide
76 14 DFU Double Load and (U] w4 Pasagr 28O (U)o g | 1450 3.0
Unpack Floating Btls s signfill; (U+1)>A+2
76 15 DEP Double Load and (U),s>A+1, . INORMALIZED
Convert To Floating (U,U+l)]59_0—*A+123_D and A+2;
if (U),.=0,(A), ..t NORMALIZING
COUNT=A+1_, . if (U),=1,
ones complement of [(A), , ,*
NORMALIZING COUNT]sA+1_, .,
76 16 Rl Flecating Expand H (U)ge0y (U)s g5+ 1600 2R g 5 a0 1.00 1.833
and Load T 0L =1, (U =T R 4
(U)s6-37Az3.0r (U)p g?Atlsg 549
(Ulgg2Atlgs g
76 i 5] FLL Floating Compress 1T (W) o=05 (U) 5 pun,—1600,38 . .- 1.625 3.167
and Load if (U) =1, (U),q.,+1600,-
ABE-E?; {U)EB-D_}AEB-S; (U+1)35-33
Az,
77 0-17 - [llegal Code Causes illegal instruction interrupt - -~
to address 241,
Table B-1. Instruction Repertoire (Part 8 of 8)

UP-4040 UNIVAC 1106/1108 | Appendix B
Rev. 2 o ASSEMBLER

SEC TION: PAGE:

NOTES:

@ The execution times given are for alternate bank memory access; for same bank memory access, execution time is
.75 microseconds greater. Exceptions to this either show the execution times for both types of memory access or
include the word “‘always'’ to indicate that the execution time is the same regardless of the type of memory access.
For function codes 01 through 06 and 22. add .375 microseconds to the execution times for 6-bit and 12-bit writes.
The execution time for a Block Transfer or any of the search instructions depends on the number of repetitions (K)
required: that is, the number of words in the block being transferred or the number of words searched before a find
IS made.

N| stands for Next Instruction.

The a and j fields together serve to specify any of the 128 control registers.

|f 28 rather than 27 subtractions are performed, add .25 microseconds to the execution time.

If 61 rather than 60 subtractions are performed, add .25 microseconds to the execution time.

@ © @ @

Execution times given are calculated using a main storage cycle time of 1.5 microseconds and a CPU clock cycle
time of 166 nanoseconds.

For all comparison instructions, the first number represents the skip or jump condition, the second number is for a no
skip or no jump condition.

For function codes 01 through 67, add .333 microseconds to execution times for 6-bit, 9-bit, and 12-bit writes.
Execution time for the Block Transfer and the search instructions depends on the number of repetitions of the instruc-

tion required. The variance is 3.0K microseconds for Block Transfer and 1.5K microseconds for searches where K

equals the number of repetitions; that is, K equals the number of words in the block being transferred or the number
of words searched before a match is found.

@ |f 28 instead of 27 subtractions are performed, add .333 microseconds.

() 1f 61 instead of 60 subtractions are performed, add .333 microseconds.

UP-4040
Rev. 2

UNIVAC 1106/1108 Appendix B
ASSEMBLER N
. , - : :
* 1106/1108 1106/1108 1106/1'108 1106/1'108
Mnemonic Cf;:fg:;;l) Mnemonic CE;:Z:E;;ZI) Menomic CE;:E:S':;I) Menomic ; C:I:;:E:S;nul) |
| ; i . i f i f |
= — I F -
A 14 0-17 DF 36 0-17 {| FEL 76 16 LCF 76 05
A 24 0-17 || ‘DFA 76 10 || Fm 76 02 LCR 73 16
AA - |18 o0-17 DFAN | 76 11 || HJ 74 05 a=4
AACI | 75 14 DFD 76 13 || HkJ 74 05 LDSC 73 11
AALS | 74 07 DFM 76 12 || 73 14 || LbsL 73 13
AH 7 04 DFP i 15 =0 Gk LCF 75 10
ALRM | 73 14 DFU 76 14 || J 74 09 LFCM 75 11
a=10g DI 34 0-17 || JB 74 11 LIC 75 00
AM 16 0-17 DIC 75 03 || Jc 74 16 LICM 75 0l
AMA 16 0-17 DJZ 71 16 1| 286 75 12 LLA 73 16
AN 15 0-17 DL 71 13 || JGD 70 i =l
AN 25 0-17 DLM 71 15 || Jic 75 02 LM 12 AT
AN A i5 0-17 DLN 71 14 || JK 74 04 LMA 12 17
AND 42 0-17 pLSC | 73 07 || Jmal 74 12 LMJ 74 13
ANH 72 05 DOC 75 07 || JN 74 03 LN 11 0-17
ANM 17 0-17 DS 71 12 || JNB 74 10 LNA 1 g7
ANMA | 17 0-17 DSA 73 05 || JNC 74 17 LNMA 19 @iy
ANT | 72 07 DSC 73 01 || JNO 74 15 LOC 75 04
ANU 21 0-17 DSF 35 0-17 || INS 79 03 LocMm | 75 05
AN X 25 0-17 DSL 75 03 || Nz 74 01 LPS ¥ 15
AT 72 06 DTE 71 17 || Jo 74 14 LR 23 0-17
AU 20 0-17 EDC 73 14 || Joc 75 06 LSC 73 06
AX 24 0-17 =4 JP 74 02 LSL ¥ 16
BT 22 0-15 ER 72 11 || JPs 7% 02 LSSC 73 10
Cbu 76 07 E X 72 10 || Jz 74 00 LSSL 73 12
DA 71 10 FA 76 00 || L 10 0-17 LUF 76 04
DAN 71 11 FAN 76 01 || L 58 Q17 L X 57 0-17
DDC | 73 14 FCL 76 i7 || L 27 0-17 LX| 46 0-17
a=12g FD 76 03 || LA 10 0-17 L XM 26 0-17
MASG | 71 07 S 01 0-17 || SsSA 73 04 || Top 45 0-17
MASL | 71 06 S 04 0-17 || sse 73 00 TP 60 0-17
MCDU | 76 06 S 06 0-17 || ssL 73 02 TS 73 17
MF 82 017 SA 01 0-15 || sw - 68 0-17 TW 56 0-17
M 30 0-17 SCN 79 14 || sx 06 0-15 TZ 50 0-17
MLU 43 0-17 SE g2 0-17 || sz 05 0-15 XOR 41 0-17
MSE 71 00 SG 65 0-17 || TE 55 0-17 = 00
MSG 71 03 || sIL 73 15 || TEP 44 0-17 = 07
MS| 31 0-17 SLE 64 0-15 || TG 55 017 " 33
MSLE |71 02 || sLJ 72 01 || TLE 54 0-17 - 37
MSNE |71 01 SM 03 o0-15 || TLEM |47 0-17 s 79 00
MSNG | 71 02 || sma 03 0-15 TN a1 0-17 ” 72 12
MSNW | 71 05 SN 02 0-15 || TNE 53 0-17 . 72 17
MSW 71 04 || sSNA 02 0-15 || TNG 54 0-17 || - 75 13
NOP |74 06 SNE 63 0-17 || TNGm |47 0-17 - 75 16
OR 40 0-17 SN G 64 0-17 || TNwW 57 0-17 - 75 17 -
PACI |75 15 SNW 67 0-17 || TNZ 51 0-17 - 77
PAI) |72 13 SR 04 0-17

T The j and a fields together serve to specify any

of the 128 control registers.

Table B-2. Mnemonic. Function Code Cross-Reference

FPAGE:

10

UP-4040
Rev. 2

UNIVAC 1106/1108 | :
Appendix C
ASSEMBLER s’ oo acEs

APPENDIX C. ASSEMBLER ERROR
FLAGS AND

MESSAGES

C.1. ERROR FLAGS

C.1.1. R-Relocation

An R flag indicates that a relocatable item (usually a label) has been so used in an
expression as to cause loss of its relocation properties. Appendix D shows the
results of all combinations of relocatable and nonrelocatable items.

C.1.2. E-Expression

Expression error flags may be produced in a variety of ways, such as the inclusion
of a decimal digit in an octal number (for example, 080), and binary or decimal
exponentiation with a real exponent (for example, 3.14%*/1.2).

C:.1.3. T=Irmgncation

The T flag indicates that a value is too large for its destined field. Consider the
following example:

F FORM 18,18

A EQU (F 0,-3) (1)
G FORM 32,4
G 0,A (2)

The form reference in line (1) is legitimate, but (2) would produce a T flag, since

the value of A in this case is 000000777774, (a value with 18 significant bits), and
the second field of form ‘“G’’ is defined as four bits in length.

The T flag will also appear on a line containing a location counter reference greater

than 31 (378, of 5 bits).

LL-LLevel

®
T
o 59

This flag indicates that some capacity of the assembler, such as a table count, has
been exceeded. The limits listed below are generous; but if one is exceeded, sim-
plification of coding is required.

(a) Nested procedure or function references may not be more than 62 deep.

(b) Parentheses nests, including nested literals, may not be more than 8 deep; this
includes parentheses used for grouping of terms.

(c) Nested DO’s may not be more than 8 deep.

UP-4040
Rev. 2

UNIVAC 1106/1108 | '
ASSEMBLER Appendix C

SECTICNSE PAGE:

C.1.5. D-Duplicate

Labels, disregarding possible subscripts, must be unique in a given assembly or
subassembly. Redefinition of a label produces a D flag on each line in which the
Jabel appears, unless the label is subscripted. The obvious mistake

A EQU 1

A EQU 2

is easily discovered. Much more insidious is the redefinition in assembly pass 2 of
a label previously assigned a different value in pass 1. This usually results from
an illegal manipulation of a location counter,

C.1.6, l-lnstroction

If the first subfield in the operation field of a symbolic line contains neither the
name of a directive, nor an available procedure, nor a FORM retference, nor a
mnemonic, an [flag is produced. A procedure is considered available only if it is
in the procedure library (that is, the system relocatable library or a user’s file), or
if it has previously been encountered in the source program. See Appendix F for
rules governing the searching of procedures.

C.1. U-Undefined

~1

If an operand symbol is not defined in the source program, each line containing the
symbol is marked — with a U flag — as containing an undefined symbol. In some
cases, this may denote a reference to a value externally defined in some other

independently processed code. But there is the chance that a U flag might simply
denote an error by the programmer.

C.2: ERROK MESSAGES

1108 ASM Internal Error Abort

The assembler has lost control of what it is doing. This may result from nearly any
cause including an anomaly in the assembler or executive system, or an undetected

data transmission error. Index register X11 contains the location at which the error
was detected. The assembly is terminated in error.

Abort Cannot Read PROC from Drum

An I/O error resulted when the assembler attempted to read a procedure from a drum
or FASTRAND file. The assembly is terminated in error.

Assembler Image

An end of file was detected on the source tile. An END card with the above comment
is supplied. Processing terminates normally, but the element is marked as being
in error,

UP-4040
Re. 2

UNIVAC 1106/1108 | Appendix C
ASSEMBLER | | SECTION: PAGE:

ASM Abott ne Scratch File A0 XXXXX

The assembler is unable to dynamically assign a scratch file. The A0 value indicated
is the status word returned by the executive system. For meaning of the status word,
see UNIVAC 1108 Multi-Processor System Executive Programmers Reference

Manual, UP-4144 (current version). The assembly is terminated in error.

Bad Procedure Read

An I/0O error was detected in attempting to read a procedure sample from mass
storage. Processing continues by searching next mass storage procedure file.

[tem Table Overtlow

Insufficient space exists for the assembler to define a symbol or literal. The
assembly is terminated in error.

Line Number Sequence Errors

The symbolic corrections inserted as input to this assembly are out of sequence.
The assembly continues. Source lines following the out-of-sequence correction card
will be inserted at the point at which the error is detected.

PARTBL Not Initialized

The preprocessor routine is unable to initialize the assembler parameter table.
Probable causes are incorrect file assignments, incorrect processor control card, or
[/O error. The assembly is terminated in error. The preprocessor also prints a mes-
sage indicating the nature ot the error.

Procedure Sample Storage Overflow

Insufficient space exists for the assembler to process a line of procedure definitions.
The assembly is terminated in error.

ROR Internal Error Abort

The relocatable output routine is unable to write a record of relocatable binary out-
put probably because of an I/0O error or improper file assignment. The assembly is
terminated in error.

TBLWRS Internal Error Abort

The relocatable output routine is unable to write the preamble to the relocatable
output file (probably because of an 1/0 error). The assembly is terminated in error.

UP-4040

Rev. 2

UNIVAC 1106/1108
ASSEMBLER

Appendix D

SECTION: PAGE:

APPENDIX D. RULES OF

OFPERATORS

D.1. RULES FOR DETERMINING RESULTS OF OPERATIONS

LEVEL 1st ITEM OP 2nd ITEM RESULT
6 Any o Binar@ Positive Decimal Exponentiation
Any *_ Binary Negative Decimal Exponentiation
Any * / Positive Binary® Positive Binary Exponentiation
Any * / Negative Binary® Negative Binary Exponentiation
Sign filled
5 Any * Any Arithmetic product
Any / Any Arithmetic quotient
Any // Any Arithmetic covered quotient
4 Any + Any Arithmetic sum |
Any — Any Arithmetic difference
Any i Any Logical product
Any - Any Logical sum
—— Any Logical difference
1 Any g o= B Any 1 if true
0 if false

@ A nonbinary, that is, floating-point value results in an expression error flag (E).

D.2. RULES FOR DETERMINING MODES OF RESULTS

LEVEL 1st ITEM OP 2nd ITEM RESULT

6 Any * oy ko Binar@ Floating
Any * / Binar@ Binary

D | Binary * /.// Binary Binary
Floating | *,/,// Binary Floating
Binary T . Floating Floating
Floating | *,/,// Floating Floating

4 Binary +, — Binary Binary
Floating | +,— Binary Floating
Binary +, — Floating Floating
Floating | +,— Floating Floating

3 Any ek Any Binary

2 Any +4,—— Any Binary

1 Any o Any Binary

(D A nonbinary, that is, floating-point value results in an expression error flag (E).

UP-4040
Rev. 2

UNIVAC 1106/1108
ASSEMBLER

D3 RULES FOR RELOCATHIN OF BINARY ITEMS

LEVEL

Ist ITEM

2nd ITEM

RESULT

Appendix D

SECTION:

1 Any = | Ay Not relocatable
2 Any ++,—— | Any Not relocatable 3
3 Any bk Any Not relocatable -
4 Not relocatable| +,— Not relocatable Not relocatable
Relocatable +,— Not relocatable Relocatable
Not relocatable| +, Relocatable Relocatable
Relocatable +, — Relocatable Relocatable
5 Any i E Any Not relocatable]
6 Any ki ok %/ Binary Not relocatable ,

® @ 0 6

Floating-point items are never relocatable.

Except as noted in 4, the relocation error flag (R) is set for these operations.

The difference between two relocatable quantities under the same location counter is not
relocatable.

Multiplication of a relocatable quantity by an absolute 1, or absolute 1 by a relocatable

quantity, is reiocatable. Multiplication by absolute 0 is absolute 0. In either case, no
error flag is set.

@ A nonbinary, that is, floating-point value for the 2nd item results in an expression

error flag (E).

D.4. RULES FOR HANDLING SINGLE AND DOUBLE PRECISION EXPRESSIONS

OPERATION FIRST VALUE SECOND YALUE RESULT
s g
. Single
stngle Double .
o A : Single
Y —— Single
s Double
Single Slngle Slngle (:EI
5 i . Double
¥ TR, —— Single Double
e Double
T Single Single @T
Double
Skl .
S Single | Double @
Double
Single aingle Single
: Double
it Single
|
D
Double o ouble

NOTES:

@ Multiplication, addition, or subtraction in fixed-point modes may result in a double precision

value.

(2) These cases are not permitted for fixed-point values. If fixed point values are used,
however, they result in a single precision result with an E error flag.

PAGE:

UP-4040 UNIVAC 1106/1108

| .
Rev. 2 ASSEMBLER Appendix

APPFPENDIX E. FORMAT OF ASM
CONTROL CARD

The format of the assembly control card is:
@gASM;Uptions Fl.El, F2.EZ, F3.E3
where options letters interrogated by the assembler are:

C Produce symbolic listing (no octal).

D Produce double-spaced listing.

. Produce complete listing (octal, symbolic, and relocation
information).

M Request 10K additional main storage for symbol and procedure
sample table.

N Suppress all listing.
O Produce octal listing only (no symbolic).
R Release 5K additional main storage for symbol and procedure

sample table.
T Request 5K additional main storage tfor symbol and procedure
sample table.

Other options applicable to an assembly are (interrogated by the source input
routine, SIR):

U Update and produce new cycle of source element.
I Insert new element to program file from control stream.
W List corrections.

S1d

F1.E1 are the input source file and element.
F2.E2 are the relocatable file and element.
F3.E3 are the updated source file and element.

It the I option is selected (as when inserting from cards), specification field 1
names the program file to contain the source code. If assembling from tape, field 1
is the tile name of that tape, field 2 is the relocatable program file name, and field
3 specifies the name of the program file to contain the source code. If file names
are not specified, the temporary run file is utilized.

For the detailed description of the card format, file-element entries, and formats of
correction lines, see the UNIVAC 1108 Multi-Processor System Executive Programmers
Reference Manual, UP-4144 (current version).

SECTION: PAGE:

UP-4040
Rev. 2

UNIVAC 1106/1108 Appendix F
ASSEMBLER

SECTION: PAGE:!

APPENDIX F. RULES FOR
PROCEDURE
SEARCHING

The assembler searches one user program file for procedures and if it fails to find the
procedure, it searches the system relocatable library, RLIBS$. If the user has more than
one file, the order of precedence for searching is as follows:

1. If input is from a program file on drum as determined by character one ot PARTBL
- 050, the user source input file (file name in PARTBL + 1 and PARTBL + 2)
is searched.

2. 1If character one of PARTBL / 050, the assembler searches the source output
file, file name in PARTBL + 14 and PARTBL + 15, provided a source output file
has been specified as determined by PARTBL : 14 # ‘SCRFIL’.

3. If neither a drum source input or source output file has been specified as deter-

mined by character one of PARTBL # 050 and PARTBL + 14 = ‘SCRFIL’, then
the user relocatable output file is searched for the procedure. The relocatable

output file name is taken from PARTBL + 27 and PARTBL + 28.

Note that a maximum of two files is searched, one user file and the system relocatable
library.

UP-4040 - UNIVAC 1106/1108 Appendix G
Rev, 2 ASSEMBLER _ _ i | e

APPENDIX G. CONSIDERATIONS
FOR DEMAND
PROCESSING

The assembler does not operate in the demand (conversational) mode as such (EXEC 8
operation only); instead provision is made to operate the assembler from remote
terminals in the batch mode. For a description of initiation of runs from demand
terminals, see UNIVAC 1108 Multi-Processor System Executive System Programmers
Reterence Manual, UP-4144 (current version).

NOTE: Demand mode processing is not possible when using the EXEC II.

The assembler control language contains two option letters for controlling the output
listing expressly for demand terminal use. These options are not required, but when
used provide the capability to obtain abbreviated output listings of the assembled
element.
C option (list symbolic only)
The C option generates a listing in the following format:
NNNNN EEEEE SYMBOLIC SOURCE LINE

where NNNNN is a five-digit line-sequence number.

EEEEE are error tflags for errors detected by the assembler; they may
all be blank.

SYMBOLIC SOURCE LINE is the input data line.
O option (list octal values only)
The listing produced by the O option has the following format:
LLLLLL EEEEE CC LOCATION VALUE
where LLLLLL is a 6-digit line-sequence number.

EEEEE are error flags for any errors detected by the assembler; they
may all be blank.

CC 1s the location counter under which data is being generated.

LOCATION is the relative location in main storage under the indicated
CC, tor which the data is being generated.

VALUE 1s the object code generated by the assembler for the symbolic
code,

UP-4040 | UNIVAC 1106/1108 | | Apsendix H
Rev. 2 ASSEMBLER PP

SECTION: PAGE:

APPENDIX H. 1M08/1108 ASSEMBLER
OPERATING UNDER
ALTERNATE EXECUTIVE
SYSTEMS

H.1: DIFFERENCES IN OPERALION

The assembler can be operated under control of the EXEC II operating system on
either UNIVAC 1106, UNIVAC 1107, or UNIVAC 1108 Computer. The following
summarizes the differences between the assembler operating under EXEC 8 and the
assembler operating under EXEC II.

m All instruction addresses are considered to be 16 bits in length (see 1.2.2).

B The 1107 — EXEC II version does not contain any double precision data capability.
The 1108 — EXEC II version does, however, contain the same double precision
capability described in this manual.

B The EXEC II versions contain an automatic capability to obtain definitions of sys-
tem symbols. The M option in the EXEC II versions can be used to suppress the
definitions of system symbols. In EXEC 8, executive system symbols are made
available only if expressly requested by placing appropriate procedure calls into
the object program being assembled. See discussion of EXEC II options 1n the
UNIVAC 1106/1108 EXEC Il Programmers Reference Manual, UP-4058 (current

version).

m When operating under EXEC II, the method of searching mass storage for procedures
referenced in the source program being assembled differs from the scheme outlined
in Appendix F of this manual. First, the user PCF is searched for the procedure

definition; if the procedure is not found, the library PCF is searched for the
procedure.

B The format of the ASM control card differs from that used in EXEC 8; see UNIVAC
1106/1108 EXEC Il Programmers Reference Manual, UP-4058 (current version).

B Options letters and their meanings differ in the EXEC II versions; see UNIVAC
1106/1108 EXEC Il Programmers Reference Manual, UP-4058 (current version).

UP-4040
RV. 2

UNIVAC 1106/1108 Appendix H
ASSEMBLER | lsecrions cAGE:

H.2. ERROR MESSAGES GENERATED BY THE EXEC II ASSEMBLY SYSTEM
***New Line Insert

The following line was takea from the stream of source corrections supplied with
the assembly. This 1s not an error message.

BOP Internal Error Abort

An internal error has been detected by the Binary Output Package. The assembly
1s aborted,

Drum ERR Abort

AnlI/O error occurred while reading or writing mass storage. The assembly is
aborted.

Drum Error On Drum Procedure Read

An 1/0 error occurred while reading procedure sample from mass storage. The
assembly is aborted.

[tem Table Overilow

Insufficient space remains to insert the next literal or symbol definition into the
assembler’s item table. The assembly is aborted.

Procedure Sample Storage Overflow

Insufficient space remains in the assembler sample storage area to contain a line
of procedure definition. The assembly is aborted.

Line Deletion

A line of source code was deleted at this point in the program. This is not an
error message.

[Line Number Sequence Error

Correction lines are ouf of sequence. Any source lines following the erroneous cor-
rection are inserted at the place the error was detected. Processing continues,

Sleuth Card

An end of file condition was detected on the source input file. This comment appears
in the comment field of an END card supplied by the assembler. Processing continues
but the error exit will be used to terminate the assembly.

LINIVAC

A S B AL B

TR
DR

TR

5

LR
Z;,fe.-gva-. ;

S e
o e

AL,

'..'..E:l..(2 B o
e A o e i e

UP-4040 Rev. 2

