~

B e S S

thénélsluﬁethanuaf‘

; 11 Cl"edits Illl‘ll.l.........".....l...Illl.'..llil.......'.llll!l.) 'i

)

2. META - A Svntax-Directed uompller Writine Language ...cvneeecacs 4
fL 2.1. What does “svntax—directed MEAN?ccevvncivroncacnacasnans ¥
i 2-2. The Usg OfacompllerI-'.."......'...-l.'-.'........lll. §

2.3. MWritine a ComPiler Using Meta .ccoveecreiecnncenanncssascnnnaa H

2.4, ¢

The Nature of Svntax DescriPtions cieceecececescascossacnsoccce

The Svntax of a META Proeram et e eeataeieeeantaeeanananasnnnnan

PPOdUCtiOl’IS ® @ 000 000 20 0SSO P TR DN E OGS0 0TSO0 00 SN0 NPEETEE QRSB OS

L] ChC‘i"eS ® 8 0 00068 60 08O 008 S0 000 AaVE S0 E 9 O SR S0 00 N0 e sEECET OSSN NO RGOS

Tel"‘m‘ists O 6 8 Q@ 090 830000000 ECQ 9 0OD0 00N EeP O E 00000 S LS OeEE NN OOV

. T&sts iﬂd ACtiOﬁS 9 ® 0 0 00 008 e0 8O0 8 0E s 0©E 0 60O P S I DOR N A8 0 e EC0E P eSO N

DNOCARU SWNNWN

!.05.0(.003(-."

D W H -

—_— = “

Neti TEST ter'“.s .-....-..-...'....'..'.............-..-.'.....'. 9
31“.9]E r'hal'a!ter‘ Tést I.II.IQ...I..ll.t...'l-ll!l-lr‘ £
MlJ]tIP‘e rr‘aracter. Testl.....l.............“; ;;-E:—‘.“II...; ':‘,
?
K/

~Multiple -Character Test with Delimiter Check o, i®wecseadaniass.

CBLANE tesSt .cceeecsoccascscansasancnsossscacsascsaces ™ scnasosncana

Assemblv Language TeStS ceveserreeccoreenosannsesimaElenines 10
Invert Pass/Fail .c.ceccsccacascsveasoncssacessasascsasssassnsaa 11
Discard ToKeénNsS .ccccceecccaccsccasasasasccsascsncsscscscssacsncssssse 11
Production Cal1l ...cceeceossccencsancccncscncsscscasacessscsascscana 11
4.9, Nested levels of CHOICES ..cceevsccccssoscasascscccsnnccsssans 11
} 4.10. Svntax of TESTS ..cceececscnesnncecansscscccasnascsanncsases 11

‘S. . META - ACTION Terms ccccceccccccsnssccssscanccasanscnnssasssscace 12

M S.1. Counted Repeat ..,.f12.

| S.2. Messase Senerating Terms cuceecacecnccccnsnsacssccnavsanscsans 12
S.3. Oetional CHQICES;...,.:12 -
5.4. Rereat Term until Fail tieeiiieecieroenncassencencccaasnenaas 12

- 5.5. CALL. Trace COntrol seeeecrosenssasecaccncanesonasocannsanases 12
4. Output Code Generatlont,f?iB ,
6.1. Code Geperation ACTION termsoccec-ooo.... SEEERC.... .. 14

_‘6.‘20 "'tf‘lng uode thepa‘s .l..l.'u.n.--n.ono.n-...ofub‘l.;:.--l.lo‘ln 15

7.1. FILEID?4................,Lb
7.2. FILETYPES cveeescecsccecrasassscasesanssssoscssscssnscansoncens 1
7.3. AttribuUtEsS ..cecesceccscsecscscoacssssacaanssassssasccccsscass 17
7.4. CompPiler Variable® .cceccceecscsacocsossacacosscnsasassaasssseso 1
7.5 Eility BStACKS wueeeecescesoscsaosesnosessonnsossnncsssscsecoascsae 17

7.6. |'xe‘|'w0l"ds © 66000000000 RE00800000c0e0cs0ses0s8cesaNsscsesesseco0caan 1?

1

'[Fby. OPTIONS and SETUP SEAtements «ueeeenennnanasesreerecrseneeesses 16
]

4] 7.7. .s‘fmt.o‘ va]'Je‘Ce]]' ..'........'l.'....l'.l...’.l"-..-."‘...’.. 20
| A

» 8. SC'LII"C@ Stl"eaﬂl Scaﬂnef‘ COﬁtl"O‘ @ s 0000 s e e e 0000 e s cs00s0e000s00 e :‘::1

)g’- USII’IS the META Cl)mPi]el"---.....--.----..-.........'.,..-...-... 2:

J

(T 7

e

_META 3.3 User Manual

R

s

1. Credits

META 1s a product of Marinchie Svystems, 146 St. Jude Rd.» Mill Vallev,
CA 94941, This manual is not intended as a product specification. The
dJescription of META eiven in the file META.MET on the release diskette
shall in al)l events be considered the final arbiter on how META warks.

The PUrpPose of this document is to explain the use of a
svntax-directed compiler compiler in enoush detail that the actual
definition of the lansuase mav be read and understood.

Z
}

e

R
TR

e - : S ‘ e a
a3

oot .

[

|

—d
)

~.

B it

i R

|

... META 3.5 User Harmal iy

2. META - A Svntax-Directed Compiler Writin® Lansuase ' 'f“g
2.1. What does “svntax~directed mean? : %
Webster defines SYNTAX as: 7 §
1) A connected or orderlv systemd: harmonious arrangement of Parts or %

elements. :
Z) The wawv in which words are put together ta foarm Phrases, clauses,
or sentences.

For our PurrPoses, svntas means the underlving structure of a lanauage
that specifies how the smallest 1tems ("tokens") are combiined to make
yp statements and Prosrams.

A syntax-directed compiler is ane that Processes the. inpPut socurce
Program asainst a description of valid swntax for the jff%iaaeem and
¢rates code to Perform the. desired functicnseeuwhen . the svntax

‘pattern matches the inPut source

relocatable &otput text files which describes the assem

messases when the inPut source code does not confeemsen the svntax
description. :

META is a lanouase with which vou describe the syntax of a target
language - — that languase vou wish to compile, and the assemblrv cCode
that should be aenerated for each Part of the source code that matches
the svntax descrieption. ' ’

2.2. The Use of a Compiler _ ST B ‘ .

In practice, a user will create a text source file wusine EDIT that
contains the source code to be compiled. The Compiler will read this
source file and create a file of assemblw lansuage statements that
perform the desired functions. Contro! 1s then pPassed tes ASM. which
reads the intermediate . assembly lanouasgse. text filg L, writes a
¥ ostatements
in a numeric farm, as i1f the - prosram. started at. address 0000 in
memory. R o o - ETE '

. i

. i 4 ‘ e
The wuser will compxle all moduleﬂ ‘main Proeram and anv wubroutings)
using the above erocess, and then will use the LINK prosram to make an
evecutable binarv file that contains the final, useable prearam. Each
time the erosram is to be run, the name of the executahle/ #ile is
entered as a command to the aoperatine svstem, - o . :

The process mav be pictured ast

Kevboard input > EDIT ¥ Rource file

Source file | > COMPILER 5 Gssembly Code File
Assemblv Code > AEM R ’Rf1-Catable'FiIe
elocatable ﬁl?es FE.%INH B B

¢:utable Fooaram

1

META 3.5 User Manual.

€

In Practice. the compiler automatically executes the assembler, so the

f,‘IﬁSM ster is transearent to the user. The user follows the pPattern:
|

|

|
|

”*,;gfgags,the hardest part of compiler writing. -

EDIT >> COMFILE 5> LINK 3> RUN

2.%¢ Writine a Compiler UWsing Meta

Ta write & compiler usina META, vou will need a- verv s9ood
understandineg of assemblv lansuave eprogramine, the function of
comPilers, and the ability to keer seperate time-related events

cosrdinated. As a pPackase, a compiler includes actions taken durins .

the oeneration of the compiler, durine the execution of the comeiler,
and dJuring the execution of the compiled program. In describine some
Ppart of a comrilers vou mav set a META flas to allow some option to be

compPpiler while it is examinine the saurce cade it is to compiles. and
the run—time librarvy mav need set—-ue directions from: oyur comPiled
code. KezPring these related but seperatelv timed event: F¥erdinasted is

The task of writine a compiler mav be broken down intgewwe followine
steps? : ’ '

1) VYou wmust describe the exact evntax of the lansuasge wou wish to
comPrile., ‘ :) E

) You must determine what assembly languase codz is to be aenarated
in resPonse to the various svntax elements. ' o ’

) You must write anv run—time subroutines that will bte needed by
the compPiled code.

You: must debue and thus wvalidate «vour comeiler and run—time
routinegs. This wil! actually consume most of vour effort,

You must, document vour coweiler and routines at

: A kvels: The
user’s TManual, and a pProgram Jozic manuwal, so tha

somesne ¢)se

oy’ :

) will need explainations ¢f why somethine was done thewav it was.
[’ I‘ This

manual will attempt *o introduce vou to META: and explain’in
general how te use it. Onlw actua) work with META and examina¥iorn of
it‘s outeut will make the pieces a1l into place. While the use of
META will not come easily, it is a verv powerful toal that /will et
vou successful'y write compilers in a reasdnable amsunt of time. and
it is well)l worth the effort to learn.

may maintain the compiler. It mav bé vou six manths tater that

[A—

:

1
]

&f';r
; “ 2.4. The Nature of Svnptax Descriptions

ail

Méféfﬁ;SAUreﬁ ﬁanuaf

It is imPossible to describe anvthine as complex as a language. in &
single definition. Thus the lansuase is broken inte several pieces,

and seperate descrirtions are siven for each mieces and then a "master

descrirtion” is made that shows how ‘the rieces fit tosether., The more
comPlex the lansuagse. the more levels of description that miaht be
used.

One aPproach that misht be used is to start our definitions with the
smallest pieces and build up from there. Ancther is to start with the
aoverall proaram and break it down into smaller and smaller rizces,.
Whichever approach vou take derends on pPersonal preference,

In this manual., the bottom—up aPproach wil) be used, not because it is
bettar, but because it allows the use of examples that ahgm-nnr\neditu
the point under discussion, without the distraction of a T»ﬁﬂe “target

5

iumgggauase' to.be learned before examples mav be made. o - o T

The =mallc<t thlnﬂs a compiler must r«a=unablv he exe#E¥ed “o deal
with as it s '

arcsuprs of characters taken together are usually the smallest thinss
that have individual meaning in a language. For exzamerle, almost all
proaramming lansuages use indentifiers, or variable names. made up by
the wuser. The “rules” +For these identifiers miaht be ¢xpPressed in
enqllﬁh- L v _ & : : R

A letter, fullowed by none or mure letters or digits, ended
br the first character that 1s not a !etter or a diait, is
an 1dent1f1er.

In META wou could describe this withs
IDENTIFIER = .ACHR $.ANCHR .uTOVEN 3 ' s

" The

Which trannlgTes back into enslth as-_

IDENTIFIER = an identiFier is) ,
(P .ACHR a letter o~ |
3$ fallowed by none or mare
« ANCHR letters or numbers
- CRTOKEN e "~ (make it a single thinse Frum nuw and
]J 3 ' (Thats ali, Folks!) /

The process of making a compile er with META begins with describins the
lanauage in euch pPieces as these. The fundamental terms that start
with a "." indicate assemblv code “run~time" subroutines. seveeral of
which are erovided with Meta for uyse by compilers that 1t Fenerabzs.
You mav alse add vour own rune ~time soubroutines that are u-=doan
@ractly the same wavw.

|

—

|
!

.

r

—

}1 Z.1. Froductions

-

2

User Manual

3. The Svntax of a META Prosfam

META is a recursively defined lansuagse. Each part of it) is dzfined
using smaller pPieces. When we get to the small picces, we find that
manvy of them are defined by using the “higher level" pieces. It is
like a cat chaisine its tail! Because¢ of this, it is necessarv to have
an overall picture of META as a lansuagse BEFORE the lansyaze mav be
adequately @xpPlained. To do this, we will make "two Passes" atl the
Problem. The first description of META is a simPlified examPle, and is
intended to give an overall pPicture, but not a good definition of =ach
riece. When that has been dune, a more detailed definition of META
will follow. ' '

S a

" . T L P gt ¥ 3 :
The fundamental structure in META Lansuase is thé&&kﬁﬁuCTIC‘i A
afduction is to META what a statement is to anotder. laneuageds A

Cproaduction defines the svntax for a sinale "piece"™ of vour averall

svntasx, in terms of even more fundamental Pieces. A siWPFTIfied svntax
description of a Production is: . : :

PRODUCTION = <identifier> 7= <choices "3 3}

This breiks down as fallows:
PRODICTION = The svntax known as <productions
: - is defined as being '

‘= "~ an equal sisn followed b

{choicesﬁ the svntax called choices ;3
g

Ty ’ ' “followed bvla semicolan . o =

: . (end of the definition)’ e

R Y .
.

One point of interest is that the META comeiler is writteén in META.
The abave META eproduction is itself writtesnsin META., See 1Ff wvou
understand how the lines

Py
“e

FROODUCTION = <{identifier> “= {choicesl

fits its own definition af a Production?

R SR

e i‘.“-iét')‘ R SR

"I.32 Choices ' , \

© META 3.5 User Manual : PR ' Ty

The <choices> svntax specifies that wvne and onlv one of a list of

svntax descrirtions must be used. A simPle definitron wf “choicess
isg?

1

CHOICES = <termlist> ¢ (7! <termlist>) 3

o R B

f! Which introduces two new terms. The braces () indicate that evervtine
inside them 1is to be considered a single term. The $ indicates that
fl the next single term is to be rereated as manvy times as it is matched.

CHOICES = The svntax called CHOICES is defined as

{1 Ctermlisty | " The svntax <termlist>
v % ' followed by none'ab more : ?égia
- 'xof the Followinersroup= e
T

The character !

- “termlist The svntax <termlist>

1

Aend of the 9roue to be repeated)

wa

(end of the definition of CHIICED)

B

B E

_l META 3.3 User Manual -
L . S , ¥

3.3. Termlists

,il A definition of <termlist: is?

a TERMLIST = { <test> | <action>) ¢ (<test> | <actiank) 3 ;
| 1 TERMLIST = The svntax called TERMLIST is ¢
{ <action>) Either the svntax of <test> or :

o (<test>
Z if not that, then the svntax of
<actian.

{1 $ " followed by none or more
(“test> | <action>) choice of the svntax of <testl
{i : or <actionl

e

End of the defintion of Ctermlistl.
- : : = - A {termlist> ends when the input:

a does not £fit the swntax of either . s
L ;

“test> or <actionl >

™ If the first term in a termlist fails, then centrol is returned to the
!1 choices level of svntax for testing the next choice, if anav. However,
i if anv term except the first term fails, then a SYNTAX ERROR is
detected, and an error message will be 9generated. This is because
I ¢ach . termlist is desisned to handle a Particular "phrase" and if pPart
of it doesn’t match, then there is an error. This mav be overcidden
bv Placing the character “:" before any term, forcins a failure ratucn
s as 1f that term were the first term. As an examele, a numeric literal
J miaht be defined bywy: - :

NLIT = $.blank & .nchr & .nchr 3

1 | | o
- which states that anv leading blanks are te be skirped, and then if
v the character . is not a _numeric dieit, the term is_pot 2 numeric
b%{j;‘ literal. . 1¢ dt is a aumeric dimif, ‘then eick ue anv Wine disits
aAlsa. i ' ‘ . - ‘ ’ ' ' '

¢

T s

b

Manual

e

‘“Pa.o,. Tests and Actions

terms of META. An action does something, such as generate outeput code,
setting internal flags, etc. A test is a conditiovnal action. It mav
— either Pass or fail., If a test passes, anvy characters that is wused
!i from the source code file are removed from the input stream. If a test
- fails, the source code inpPut stream is unchanpsed from when the test

started, with one exception. Many tests will skie " over anv blanks
F(before starting, and these blanks ARE removed, ever if the test fails.
g Later in this manual, individual terms are described, and those terms
that do this are identified. :

{l The svntax elements called {test> and <action are the two fundamental

I3
¥
i
¥
¥
¥

;
| (Some exampPle tests are:

. TESTL = -7 <chel 3 Test for the existence of a sinsVE.
v : : . - character. We used this above with
T ‘= to test far ar equal sian T
C e il
. TEST = 7" <allx 7" 3 . Test for the existence aof a strine
JI - ' of characters, such as a kevword.

“"READ" would test for the kevword
READ being next in the input stream.

lJ Some examPles of actions are? v _’ ’

Generate outrut code‘Frqm.the rpattern
given in the string literal. An examples

“e

] CODE = 7' <s1>
| S

'“\bl\subroutine/". R .
\i TEXT = “.TEXT" <8l 3 Se¢nd the strine 'iteral to the conzole
3 as a messase o E ’

- . .TEXT "PLO Compiler V1.0".

o Thesev“mini¥definitions"\are'intendéd to sive vou a frame of reference
g For the more detailed and accurate descrieptions that follow. You
[Jelbshou\d not expect to understand exactly how thew fit together at.this

puint. ' : o .

___ -
e e

META 2,5 Us&r‘Manuai

)
. ‘ﬂ(‘ ;f,w:‘ Lo
/‘P-‘l. Meta TEST terms
}Ai 4.1. Sinale Character’TestA

|

S

SCTEST = ‘7 chr 3

Any leadine blanks are skipred. If the next character is the srecified
character, then the test passes, and that character is removed from
~ the input stream. If it is not the specified character, then the test
MI fails, and onlv the leadins blanks have been remuved ¢rom the input

|

stream.

~ .
!_K 4,2, Multiple Character Test

MCTEST = <strins literald o | SR

Ao :
B - strine literal specifies a multiple character test. Anv leadine
danks are skipped,» and then the literal is tested asajipsts the inpPut
 stream. If it matches. the c<characters are removed from the input
j 1 stream, and the test passeés. If not, onlv the leading blanks are
removed from the inPut stream,» and the test fails. If uprer case
_ conversion is enabled, the test 'iteral MUST - be srecified in urPer
]] case to match the input stream. - ' ‘

{] 4.3. Multirle Character Test with Delimiter Check

~ MZTESTD = “? <strine literalr This test is identical to MCTEST excert
\} that ‘the character that follows the last character of the matched
J strine literal must NOT be alphanumeric if the test is to pass. This ;
lets vou test for a word such as GET and fail when scanning GETTING

~ 4.4. BLANK test o x o . ,

Lﬁghince many META tests, including all of the abome listed tests, skie
- any leading blanks that are epresent. while others, such as those used

tec build tokens, do not. the ¢ollowina test will Ppass if a “lank is
{J the next character, and if so. the blank will be removed From the

4

input stream. , /
JBLANK . e

[

)., This 1is an examPle of an assemblv lansuase test reference.

T gy

,] L ©7 L META 3.5 User Manual

o .S. Assembly Lansuase Tests

Any term that starts with a pPericd and is followed by an identifier is
™ considered a call to ‘ .
1 called with a BL instruction and returns with the E@ flaa set to
indicate FAIL. and with the ER flas cleared to indicate PASS.
., Reeisters ré and r7 are used for scanning characters and must naot be
}} chansed, and register r10 is a local use stack that mav be used but i
') must be restored uPon return. See the source code for the METALIE '
routines for examples.

kg L R

LI ATMTEST = “. <identifier> [<arsd 1

The optional arsuments are defined by:

-
)J o
‘ ARG = <numeric literal> | <identifier> | JIstrins literal>
P77 sanve 3 , e
xnd rePresent pParameters Passed to the routine bvw gederating them as

nline data statements fullowines the BL instruction., . oo

i As an examPle, the test .ASMEXAMPL(1234vaIPha,’c) will 9generate the
L Fal]awins call:

[: b1 - SMEXAMPL
| | © data - 1224
dJata alpha

ll.:ll

] a dJata
{ And the term .ASMSTG("string 6F text") will gererate:

b1 - " ASMSTG \ | -
“text “strine of text” SEEE , : » .
bvte i 0 Co ' t R R

e metERTT e -

' even v - R S \'; . : : m‘ . &
wew A) LT s - L : o < il : N

META 2.5 User Manual %

R R #

] A
4.46. Invert Pass/Fail

c I+ anv test term is preceeded bv a minus sien, then it's pass/tail %

a

status is reversed. For example. =" means *o test fFfur a auote
- character, and remove it if present. Fail if 1t was present, and pPass
\(otherwise.

AR T

1 4.7. Discard Takens
DTOK = “~ - .<numeric literall ’) 3

}i The indicated number of tokens are removed from the token stack and
discarded.

{

{i 4.3, Production Call -
s e
An identifier that does not -have a period before it is 4 call to
~rfrsther production. This lets vou de) in Pieces ‘and
connect them. The Pass/fail status of that eroductign.becomes the
Pass/fail status of the term. An example of this is. the use of <aral
f} in the specification of an assembl~ lansuage test. Note that the

characters < and 2> are opPtional, as thewv are allowed for compatibilitw

with BNF notation onlv. Usually, thev are not used.

]
| : . .
- 4.7, Nested levels of CHUICES

F} AnvPlace that ~rou may use an individual test, vou mav use a set - of.
L choices, by enclosing them in (bracesl.

| - . K o - .
[] 4.10. Svntax of TESTS ' c

' TESTS = <identifier> % eproduction call % -
! <strins literal> % multi-character test %
{77 <string literal> % test with delimiter check %

i ‘= tests _ % invert pass/fail. of next term %

b7 7 {inteser literal2 ’)"Z qiscard\t$fen5 o D
V7. Zidentifier> £ are 1 % assemblv lansuame test % —~

B

che % sin9ole character test %
“(choices 72 % outer level! choices as a term %

i , o METQ 3.5 p;er Marual . , y iwfﬁ éf'

S. META ACTION Terms ;
) ACTION Terms are those terms that alwavs pPass, and thus are not ;
' tested. Thev pPerform some desired action. Thev are used to aenerate
. output code, make messases, Provide cortional constructs. and repeat
1] Pparts of the swvntax. :

b T

71 S.1. Counted Repeat

This term Provides the ability to repeat a selected term and count
- down the value stored in a .DECLARE variable. When the value 1s Tero,
i the repeatina ends. The format is:@ ' e

RPT = ?"REPEAT" <declare cel) identifier>
{ acticn) test) 3 '

|
|

.ERROR <strine literal>

[.TEXT <string literal>

- S.2. Message Cenerating Terms
‘ ﬁ,wmrm_

.
L
|
’,

Both of these terms displayvy the strins literal as a console and
. listing message. Error will also generate a svntax error sequence.
. |
i

B S.2. Qetignal :CHOICES
| , . . — ‘
LJ By enclosing a term or a list of choices serPerated by "!" in
{bracketsl, the resluting pass/fail status - is ignowred, making 1t s
(~ Rresence . oPptiaonal. Note that this does not mean that a multiele term
J ;choice that passes it“s first.term can fail! following terms.

15,4, Repeat Jerm until Fail

RF = "¢ <term> _ '
. N - . - . -~ ’ l- ‘.‘"" - :
(§§rhe term is rereated uatil it ¢fails, and the fail status is converted
T ta pass. ’ ‘ ' : S
%.5. CALL Trace Control N ' :

(J . TRACE

~ NOTRACE

["These terms turn a trace Vizting of each praduction as 1t
|1 onoand off. This is used tx debus vour META eroeeram. These terms
should not he wnoanv finichzd META proaram.

META Siﬁ User Manual

i

Pé. Quteput Code Generation

A the swvntax analvsis of the source code Prooresses. aPPrafFriate
ssembly lansuage code should be generated to perform the statements.

‘ ile) or it may be stored in memory (deferred) for later output. This
is useful when the source svyntax is in- a different order than the code

that must be 9enerated. An e¢xample of this is a statement to write
l data to a disk file: "

|

PRINT #13A,E,C

l E The «code. to write a line to the disk file will be 9eneratad b
J analvzing "PRINT #13" but should not aPPear in the assembly pProgsram
until ‘after the line to be Printed has been e¢dited by analvzine
((“A,B,C". In this case, the outPut from the "FRINT- #13" -is deferred

until-aFter'the autput from "A»B.C" has been generated. s

. - . i 4{.,, . = .

[~ META version 3.2 offers 4 seperate deferred cuteput streams, and alsa
~yffers a switchable eutput stream. The switchable stream mav be
15519ned te direct autput or to anv of the deferred’ output streams,

and then other productions that senerate code to the ‘switched autput
(] stream will use the Pre-selected output stream. An expression analvzer
misht senerate code to the switched stream. Other producticons then
could ‘reference 9eneral exPressioms and select which outrut stream the
f] exPression code would be sent to.

When voiu-are feadv to use the code that has been sent to a deferred
sutput stream, wou transfer all code saved in that stream to the

N

might he-
= hengrate code for “PRINT #15" to a deferred output stream -
'fl Generate coede for "A,B,C" to the direct output stream ‘ <

— Transfer all code in the deferréd gtream to the direct stream.

'ﬁ] Transferins = - deferred nutput stream empties it. It £5$!§§Gn te used
again for new deferred output code.

Code mav be sent directlv to the output stream (ysuallw the TEMPLS -

direct outeut stream. In the above examPle, the seauence of events .

i

G o A B

Lo META 2.5 User Manual : ' A

.~‘Pé-.l. Code Generation ACTION terms '
The form of the direct cuteput ACTION term ist

(1 DCODE = ! <strine code literal>

Py R g B it

The form of a defeﬁred cutput ACTION term iss

e

(] DEFCODE = 7' <numeric literald> <strine code literall
) For- the present version, the numeric literal must be 1.2,3, or 4.
| . .

i1 To transfer code from a deferred outPut stream, use:l

f} DEFTRAN = “~ <{numeric literald> -

SWSEL = “!' ‘= <{numeric literal>

The numeric literal must be 1:2,3, or 4, e #
}'bwlt.e~ faorm used to select the switched outerut stream is:

C 0
}J The numeric literal must be either O ¥or direct outeut, or 1,2,3. or 4
for deferred outeput,

(} To generate code to the switched output stream, use:

SWCODE = 7! 0 <{string code literal>

“owil - META 3.5 User Manual E

ﬁ.b.z. Strine Code Literals

The actual code.tc be o9enerated is specified by a strins& code
i literal. This is a text strine enclosed in "auotes". Several
B characters have special meaniness in such a string.

\ Tab to next assemblvy field

/ end the line of assembly code and send it to the ocutput stream

“c copvy the next character exactlvy. This is wused to ayteut
characters that have other meanines.

*# output the tor token and remove it from the token stack.

+ outeput the tour token, but leave it on the token stack.

‘ #0 Generate a decimal number for the value in DUTO.

#n Generate a label unique for this praduction call. There are four

{ such labels available for each productinn iteration.

A1l ather characters are coried exactly as thev appear. *

R

"ywaor each of the followins examPlas, assume that NAME is on the‘topzﬁof
the token stack, and ABRS is next on the token stack.

| T . ve\pshr\ro/"

} Pshr rQ
. . SN\ TINrO, ¥/ \mov\rO,#/"
! 1Mo r0» NAME
L . mov r0, ADRS
]"_‘ o !“\1 i\r,Q’ I-ul*l’.“/ll
{_ 1o “gn
i~ - . 1O\MaVv\+> rO/\MoaV\“ #r 37+, #/"
I mov NAME, rO ' , *
— mov #r 3+, NAME o -
=3 - h -
LJ
’ [hg —~r’

‘META 3.9 User Manual

<o A

@7, oPTIONS and SETUP statements ~.
There are several meta facilities that reauire setupr or data
declaration before startineg wvour eprogram. Collectively, these ars

called ouptions, even thoush some of them are very necessaryv. Thev :
appear in wvour META eProsram before the .SYNTAX or .STATEMENTS terws. 1

7.1. FILEID

One such setur ertion is the assisnment of a file id for use bv the
link editor. Each META pProsram module shoeuld start with this ortion:

FILEID <module identifier> 3

7.2. FILETYPES c e i

that has .SYNTAX in it) is the filetvre ortien. This specifies the

_{TEWAﬂother setup ortion that must be present in a main module only (one

(] +FILETYPES ;MET .REL ASM 3

default “file tvees to be used for source and destination files if’ the
names 91ven do not have pPeriods in them. It~- s format iss

- .FILETYPEb Lsource file tYPeJ « <relouc fxle tvrel
_ T dexit cmd name> §

- As an examPlé&

is used bv the META compiler itsel@.

Use of an exit command name 'otheb than AZM allows code opt1m1ger

b modules to be autumatxcallv included in the comPilation Process. o

J

_META 3.3 User Manual

’ 3. Attributes

There are twoe tvepes of attributes. GLOBAL attributes are gencral
PUrruse ves/no flags., SYMBOL attributes are +wves/no flaas that are
related to an individual identifier. There are 32 3labal attrilbutes
and, for each identifier, there are 22 svymbol attributes.

To declare an attribute, use the .attribute statement:

.attributes name 1it €, name 1it ...] 3
where name 1s an identifier associated with the attribute, and 1it iz
the rnumeric it number 1 throush 32 assigned to that attribute. Soame

exampPples:

.attributes fevar 1, intvar 2, stavar 33
.attributes inrfile 25, outfile 263

Each attribute becomes an assembler equ statgment:

e .attributes fevar 1, intvar 2, stevar 3 ' .
translates into:
fpvar equ 1
intvar equ 2
stovar equ X
To use slobal attributes, vou use the followine terms:.
.slattribute) set 9lobal attribute on
.r(attribute) reset alobal attribute off
.iff{attribute) Pass if 9lobal attribute is set (an)
—.if(attribute) pass if alobal attribute is reset (off)
To use symbol attributes, you use the followins termq,ﬁ.%%fiﬁg'in mind
that they amply to the svmbol that is closest to the F the token
stack? ‘ .
0 .as(attribute) set symbol attribute on
.ar(attribute) reset svmbol attribute off
.aif(attribute) Pass if svmbol attribute is set (an)

—-.aif(attribute) pPass if svmbol attribute is reset (aff)

Attributes (both Svmbol ‘and slobal),éfe all reset upPan léadine v
campPiler, and if necessary, must be set bv wvaul

META 3.3 User Manual

B =
T

.7.4. Compiler Variables

You can set aside named inteser variables for vour compiler tu use
while comPiline a Program. You do this with the declare statement:
-
, .
.declare name [(lenath)] [,namel(leneth)...] 3
. where name 1is the name to be used bv the variable, and should be
‘, unique in its first 6 letters, and length is the number of lé&-bit
words set aside for that name. If the lenath is nat sevecified, then !
word is set aside. Some exampPles aret
k .declare nrint.nrfes
.declare bia(1000)3

Each name 1is defined as an entry name so that the link'editor ma
allow manv modules to refer to that variable. '

BAR T

..To use these compiler variables, the fallowina terms are available:

]

]

. .clir(var) set var to O e
«inz(var) add 1 to var
.dec{var) decrement var :
.set(var,lit) set var=lit (the literal value)
.mavivarl,var2) set var2=contents of varil
«max(varl,var2) set var2= largest of varl or var2

.eal(varlitl,varlit2) prass if varliti=varlit2

EGQL treats each Parameter as a'Titeral if ite value is 255 ur Jass,
Dtherwisa, 1t 1s assumed to be the address of a comPiler variable, and -
the contents of that variable is tested.

«gend(var)

" GEND senerates a .decimal .number equal to the valdq=HE§yar inta the-
outrput streat. . . L i .

Anv externally defined variables in the compriler runtime pPackase
(metalib/metauti)) mavy be manievlated with these.terms. ‘ ity

et

There are three terms available for performing arithmetic an declare

cells:
}/
.cadd(var,1it) : . add the literal t& the variable
.vadd(svar,dvar) _ add the source variahle to the
: . - destipation variable ,
" svmpPy (svars dvar) cmultiely the two variabl and

@s
store the result in the destinatian.

Pt

i

META 2,% User Manua!

jpms. Ltility Stacks L

META 2 pravides vou with the ability to have several uotility stacks
under vour direct control. To declare each stack use the stalement:

.stacks name(lenath) (.name(lensth)...] 3

which declares -each name a wuwtility stack holding lenath number of
14-bit words.

To use these stacks, vau have the folowing terms:

.sPush(var,stack) push var to stack. Pass Unless
stack averflows.

.sParP(stack,var) PoP var fraom stack. Ppass unless
stack is emptv (under+low) [

e e

.7 . Kevwords s

In most lansuases, there are certain kevwords that must rnot be used
for identifiers, as they are used by the lan2uase itself. The term
«KWCHE described under tokens checks a list . of such bkevwards. Far
this to woerk. however, the kevword list must be defined. The kevword
statement does this: ’

-e

KW = 7".KEYWORDS" <kwrd> $ <Lyvwrd> <3
kwrd = .achr $.anchr §

A1l kevwords MUST he listed in ueper case to allow case insensitivity
in the resulting compPiler. ’

awe -

An exampPle is:) w
g _ s e

.KEYWORDS GET PUT. READ WRITE DO FOR TO STEP 3

|
|

)
| S

‘]' 7.7. Svmbel Value Cells

L e

META 2.% User Manual

Each svmbal table entrv mav have ane o more named value o s11s
attached to it, which are all set to zero when the svmbol 15 det 1aed.
You 1o ltement this with the .values statement:

.valuyes name [rrname...l 3

There mav hbe only one values statement Per Praaram. which must liet
all of the desired value cells,

For esxampPlel

.values nrdim,» tcode, assoc, sveaus

would declare that each svmbol table entrv will have 4 valy- .
known as nrdim, tcode, assoac, and sveadu, which miaht partaps retar
the number of dimensions. variable twvpe oode, At assca.tabad

e T

A..variat-les, and socome svmbol e¢quate value.

You mavw onlv work with the svmbol value cells for the svmbol that is
closecst to the top of the token stack. You do it with the falluwins
terms: i

.vldivar,valcell) move variable to svmbol wvalue cell
.vst(valcell.var) move symbel value cell to variable

for example:d

)

W

——

—
t

.vidlintbin.ardim) move intbin variable to the nrdim
of the current svmbal,

'ﬁ = T

: . .7) - . - * - E - .
i . . . U e

META 3.5 User Manua!

eﬁ?. Source Stream Scanner Contro)l
5] Several . external variables are2 availtable in the 1aput file sccan
~ routine to allow META prosrams to control the irput stream. Thev wmav
be changed with .SET and tested with ,EQL.

Bl ealchr This «<e¢ll holds the chaaaracter to be arended at the and af
every source line. Set it to a spPace unless vau have a line

;z eriented lansuase.

| :

- cmtchr This «character starts a comment. The input source stream is

— igrored until an end-fo comment character appears.

| o |

‘ cmtend This character ends a comment. If comments are handled by A

N statement tvepe such as REM in BASIC, set cmtchr and cmtend to

:1 -0 to disable comments. :

' 1flche This character aeppearing in the source stream,g}ll fFlustrsta

i u the end of the line and get the nest source line "as 1f. gk

]§<n-A - were on the same pPhvsical line of text. e

,.__OI'F'Iush - This switch causes the line flush acticn., Ifour Prasram
l decides to isnore the rest of an inPut line, set this
variable to 1. T

r Svmuc If this switch is not 2zera, all characters exceprt thuse
)I accessed throush .ANYC will be converted to upper case. ‘
smade - This . switch <contrels strine mode. When it 15 non—-zera,
[1 comments controlled with cmtchr and cmtend are temporarily
J disabled, so that those characters mav be used 1n strines.

accessed, startine with 1. If it is zero, the nert charac¥er
will be the first character on a line.

mj In addition ghere is cne test term provided: w

NEOL | S | o o

TJ colcnt This cell holds the column number of the character last

@DLhich passes if there are anv characters le¥ft an-~the present Nine *muf
]) g y I .
source text, :

4

. } META 3.5 User Manual

I“' Yeina the META Comeiler

META (and all comeilers mrittén with 1it) have the #allawinz commancd
'1 svnitans

META “reloc filer=<sourcefiler ([<asm filel) [.<liztine Filel)]

3

‘f Relacatable files will have .REL appended to thelr name unless: a
pericd appears in the specified name. Source files will have .MET

appended ta their names unless a pPeriod apPears in the name. (These

{1 - default file tvres are determined by the .FILETYFES statement).

To use a file without anv tvepe default, specifv the name with a r:riad

as the last character: ‘ '

META tempPi%.=Pragram

AJHMMIF A cmmpile anly. orPeration is desired. omit the refocatable Q1.

@ riafme

META =eproaram

] _ | | |

L There are a few "typing saver" aptions allowed with the relacatable
and scurce file name. If no equal sisn is present, then the first file

f‘ name specified is used for both files:

L

META pPro9ram

(} will use Progsram.rel and Prooram.met

g

If the files are on different drives. vou mary use the faorm:d

:T ; _] ‘ , .
J

META L/=2/Pro9ram

F?j whichkh wil) use.l1/pProgcame.rel and 2/eroaram.met
| Sl Y =

N
]
J
3
{

, META 3.5 @UICK-REFERENCE sUMMARY 3
SRR B £ e T UEgELS AR SRR
f STRUCTURES N T
» IRraal = [loPrtions ...2 :
@ (.STATEMENTS ! .3YNTAX } ,
! 3 Istmt> (END -
ll Lstmtl= Tidi = £ 71 <termlist> 3 <choices: %
) <choicesk = Stermlist> $ (0 {termlistd) ;
o “termlisth= Cterm> $ (<action> ! “eltestd Idtest i ‘
L.
Sterm = Cactions | <Jtestl
- .
ii OPTIONS
i LFILETYPES .source .reloc exec
‘1 . TAES
l, cNOTARS
CETACKS <Jid> € <2d23 1 <nZ Y
- LDECLARE <C1d% € (<Xn2)] »... '
| | - ATTRIBUTES <id> <n> ...
& .FILEID <id> ‘
- LCODE <idy <e ... o
LJ LVALUES <idX »...
SFEYWORD:S <kid: [,1 ...
il ACTION TERMS (NOTEST)
— '= - assion variable ocutrPiut stream
|1 0 is direct output, 1-4 defered
- 'O <8l variable auteut from literal string
'O el variable output from code Pattern ° S
{” '<n> <s> output to defered stream from literal strins .
{ '<n <P outeput to defered stream from code pattern. ¥
- “~n “Pup defered output stream <ns i
IE?» . «FPRNDEF (<In) print defered stream on console as me " . L ;
lJ -REFEAT v <lterm> pPerform <térm> <v> times
) . TRACE production call trace on
SE NOTRACE . Production call trace off .
I .ERRIIR <sl» ~swntax error with displaved VYext messase A
LTEXT sl) diselav tex* message ‘ ”
[.FAIL , fail current procductidn ! i
11 .PASS " term that alwavs passes , i
o [<choicesX) cptional choices S ‘ .
‘ % Tterms , rerpeat term as lone as it pPasses
!l LLIMIT <nX % “term> rereat Passing terms up to “Inl times
j
L
L
[S 2

|
{ <1
8-
'y
[] ~< b m
SO TR)

TEST - TERMS (can eass or ¢aiil
invoke production :

Prass if string literal value 1¢ pRast instrzam
as above. hut delimiter must be vnon-an tn pas-
invert Pass/fFail af Cterm>

digcard “n> tokens

. discard one token

invoke assembly lansuage subrautine

« w1dZ (warer) asm subroutine with arauments

«azhr
. sANCHT
’i o mzhrs
| .
{ hehir

o AN
(" cuntalkn

(- oen

L B
e evihr

RY M LUm

(

ckwohtk

atuken

C_J

. Frmbl
uJ . QS'.mb i
E},_ i af EN qr-h)
I
LsYmMSCn

L nxetevm

} IDURRYM |

.mtoken(¢

”1 sltukean (.

test for occurance of character <ok next tnslbream
test for character, allowing leadine blanks

| RN
[- . s
1w (<chulces> 2 allow multiele choices as a sinsle term

TOKEN BUILDING TERMS

alrha character builds
alrha or dieit ok.

divit ek . ,
hex digit ok Lt P :
any character ok : R o

remave char tast appunded to burld bufker_

/I

character accePted bv test e
O thru ¥ value of last chr 1if dxnlt
and 10 thru 35 Fur A thrv Z

) if next chr is “c* then arpend it
) arPend the character "c“

pass if token not a kevword
it it is, return token to instream % fail
ayee taoken to tokeén stack

pass if tuken is ereviwusly deéfined
set CURSYM

add (deflne) token a= new svmbol
cet. yURSYM

reference symbol i_rw:-m#ﬁURS‘-j{M }for‘ 'attrit‘yutew:"

v®luyass etc.

1n xalxze symbal table scan ,
apeend next symbol to build buffer T
normallvy followed bv .atoken

se v CLIRSYM

e

current symbol eointer o e /

CHARACTER CLASS VARIABRLES

character classes are?

!
=
L9

- @ CCICA Upper Case Alrha
‘] 2 CCLCA Lower Case Alpha
)4 CoN Numeric Diait
8 CCH Hex letter A-F or a-F
j} 14 CSPCL Special Characters
! 2 OCIZA Alrha uPPer or lower case
7 CCAN AlPha or numeric diait
=y 12 CCHN hex digit 0-9, A-F, or a-f
}1 22 (unused)
B Y (unused)
h} 122 (unused)
CHRACTER CLASS OPERATIONZ
-
{3 LZLTEST(Cvr, <iclassvars) Pass it char in v fits class
T WCLCORPY(<Zoldclassydnewclassy) Define <newclass> to be all
- characters fittins <oldclasst:
j} _ CILINS(<char or var>,<class>) Add character to class
- L eI?LDEL(f-T’_-:har ar vari,<classl) Remove character from oclass
-
|
L.

|
o

T

ATTRIBUTES

o8 (Z1d) set alobal attribute
o (21d) clear 9labal attribute

LJ1F (D1d) taest 9labal attribute

.as (<1d>») set svmbol attribufe
f .ar (1d*) reset svmbol attritute
! .alf (1d>) test svmbal attritute

‘j ' VARIABLES (declared)

‘ ez lr (v clear variable to O
eln (slvi) add 1 to varaible
Tl edec (Ivi) ' subtract 1 from variable
(.set(<vars,<n™) cet variable to value <nx>
cmav(Ifromvi, Ttavi) tovEEromy
(emax (vl CviED) v2=max of the twa variables
(} ceal (v, vzl rRass 1f v1=v2

values less than 254 are lYiterale
otherwise thev are variable ddrecee.

;J . egend (£v) sutpPut decimal value of vl direct

[@ ecadd (v, inl) add literal <nd to variable - /0
evadd (v, v add <vl1 to v

— e vmpPw (v LT, Dy 20 vi¥vZ to vZ

lJ v1tOCliy:) S Pass if VIO

L cevenup (yvi) “round YV oue to next even valus

«dadd (v, IvE22) add 146 bt vids ta 2 bt vET
cdmey (v 1&aT, SIviE3ET) multielyw 14 b2t vi1ds tao 22 bk

]

ednea(dz) neaate 22-bit variable
|
[j ‘ ' STACES
— .sPush(var,sttk) Push 1nteger to stack
EJ fail if stack is full
L «s5Pour(sthk,var) . Ppup stack to 1nteger

fa1l 1f stack 1s cemety

VALLE= of svmbals

.vld(var,valuename) set svmbol value
.vetlvaluename,var) get svmbol value *a var = =~

i

«NEQL
. BLANE
« LINSICA

ealchr
cemtchr
cmtend
1flchr
1¥flush
SVvmuC

smode

coleont

nolink
nas$
agto

N

tab
end
use
CaPY

nse

AQene
dene
Qene

SCAN CONTROL

rpass 1f not end of line

Pase 1+ next character is a blank
unscan Praevious character

chr must ke on came source line

chre to appPend at wal

chr to start embedded comment
che to end embedded commernt
char to flush rest of line
switch to flush line if nat O

convert to upPercase if not 0O, excert .AMNYC
strine mode - disables cmtchr, cmtend
cal # af last chr accessed. O=start of line next

OTHER STANDARD VARIABLES

errars., I¢ O, campiler will link to ne:xt pPraarcam
O=mdes: =1=Ni0s '

used to hold value 9enerated in outpuyt

CODE GEMERATION ELEMENTE

to next ASM field

se¢nerated line

token from stack
token from stack

c literally (used to

coutput ZGEN charactare)

rate JUTO value in decimal
rate QUTO value in hexidecimal
rate label uynique to production

