Marinchip 9900 Disc Executive
User Guide
For Release 3.1

by John Walker

(C) Copyright 1880 Marinchip Systems
All Rights Reserved

Revised August 1980

i : . 16 St. Jude Road
Marln(’hlp Sgstems Mill Valley, CA 929":‘1 r :a (415) 383-1545



Marinchip 9800 Disc Executive User Guide

Table of contents

Introduction

Using the system from a terminal
2.1. Loading the system
The file system
1. Disc files
2. Device files
«2.3. Common file nomenclature
3. User console commands
3.1. JUMP = Actlvate program in memory
.4, Console support
4 Console input
Line delete
Character delete
Word delete
Retype input line
Expansion of control characters
Escape input
Console output
output pause
Console interrupt
Printer support
1 Page formatting
.5.2. Printer pause character
3 Console output to printer

2.
2.
2.

O\Ollhwlu—'

NNNNMNNMNNNMMNMNNN
=3

Unformatted disc support

System calls

Program execution env1ronment
.1. Memory allocation
.2. Initial workspace

2

2

2.

2

U

3.7,

3.1.1. Process control

3:1:1:.1. EXITS (02) Terminate process
3.1.1.2. TRAPS (0E) Reset interrupt action
3.1.1.3. MEMS (OF) Determine memory limits
3.1.1.4. EXECS (11) Execute a program
3.1.2. File control

3.1.2.1. OPENS (05) Open a file

3.1.2.2. CLOSES (06) Close a file

3.1.2.3. DELETES$ (09) Delete a file

3.1.3. Input/Output

3.1.3.1. READS -~ {0B) Read from a file
3.1.3.2. WRITES (0C) Write to a file .
3.1.3.3.  SEEKS$ (0D) Set file address pointer
3.1.3.4. IOCTLS (10) Set file modes

3.1.4. System call error codes

3.2.

3.2

3.2



Marinchip 8800 Disc Executive User Guide

Table of contents

w

Program parameter string

Floating point emulation

.1. AES ¢a1) Floating add

.2. SES (02) Floating subtract
.3. MES (03) Floating multiply
.4. DES (04) Floating divide
5.
S

W w

-t wmd wnd el b

CES (05) Floating compare
vstem subroutines
Calling sequence conventions
Output editing package
Edit mode
EDITS - Enter edit mode
EDITXS - Terminate edit mode
EDITRS - Re-enter edit mode
The column pointer
ESKIPS - Position column pointer relative
ECOLS - Position column pointer absolute
ECOLNS - Retrieve current column number
Character editing
1. ECHARS - Store single character
.2. ECOPYS - Copy character string
3 EMSG1$ - Copy string to stop character
Message editing
EMSGS - Start message editing
EMSGRS - Continue message editing
Numeric editing
EDECVS - Variable length decimal edit
EDECFS - Fixed length decimal edit
EHEXVS - Variable length hexadecimal edit
EHEXF'S - Fixed length hexadecimal edit
Sample use of the editing package
torage and linked list subroutines

W -

wn -

N =

ISENESESESESESESNSESESESE SR SRNENN NNV RNSRS NS
Bwnn =

NONONNOHDBBWWWWONNNN = = -

(ﬂ(ﬂO!(B(ﬂ(ﬂ(ﬂ(ﬂ(n'(}\(ﬂm'hrbbbbbhﬁbbbbbkhbhhnbshnbnhnh;hwwwwwl_wf\)

1. Dynamic memory allocation routines
1.1. BEXPS - Add space to buffer pool
1.2. BGETS - Allocate a buffer: error if none
1.3. BGETAS - Allocate a buffer: return if none
1.4. BRELS - Release buffer
.5.1.5. Buffer allocation errors
.5.2. Linked list routines
.5.2.1. INITGS - Initialise queue links
.5.2.2. INSERTS - Insert buffer at queue end
2.3. PUSHS - Insert buffer at queue start
2.4. REMOVES - Remove next buffer from queue

ystem utility programs

1. ASM - Assembler
.1.1. Calling the assembler
1.2. For more information

&b D wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwuww

11



Marinchip 9800 Disc Executive User Guide

Table of contents

2 BASIC - BASIC interpreter
2.1 Calling BASIC
2.2. For more information
3 BCOPY - Binary file copy
3.1. Examples of use
.2. Restrictions - device files and BCOPY
3 Messages
BRAINS - BRAINSTORM diagnostic package
Running BRAINSTORM
Memory diagnostic
Memory subtests
13: Clear to zero
. 1B: BSet to all ones
2A: Sliding one bit
: Sliding zero bit
3: Address interference test
4: Addressing validation
5: Byte addressing
Processor diagnostic

b;L;;;LL;L'
S P iy
SO wh =
N
o
L]

CREATE - Create a file

DELETE - Delete file or group of files
DIRECT - List file directory

DU - Disc utility

Using the disc utility

Disc utility commands

- Dump in ASCII

- Copy disc

- Copy track

- Dump in hexadecimal
End disc utility

- Read and dump next sector
- Patch buffer

- Read into buffer

- Read and dump in ASCII
- Read and dump in hexadecimal
.11. VD - Validate disc

.12. VT - Validate track

13, W - Write

.14. WB - Write back

IT - Text editor

1 Calling the editor

2 Using the editor

.3. Temporary files

4 For more information

FDIAG - File diagnostic

1 File diagnostic operation

.2. Error messages

LINK = Linker

OWONdOO D WN =

ggxgzgcggns

111

-37
-37
-37
-38
-38

-39
-40
=40
-40
=41

-41

-42
-42
-42
-42
-43
-43
-43
-45
-46

-49
-49
-49
-50
=50
-8l
-51
=51
-51
-82
~0e
=82
-52
-53
=53
-83
-83
-54
-54
-54
=55
-55
-56
-56
-56
-58



Marinchip 9900 Disc Executive User Guide

Table of contents

4.11.1. Linking a program
4.11.1.1. Shorthand linking
4.11.1.2. Normal interactive linking
4.11.1.2.1. Defining the output file
OUT command
4.11.1.2.2. Specifying the program base
BASE command
4.11.1.2.3. Naming the input file(s)
IN command
4.11.1.2.4. Table of contents files
LOC command
FETCH command
4.11.1.2.5. Listing the memory map
MAP command
4.11.1.2.6. Closing out the program
END command
.1.3. Comments
.1.4. Executing the program
.1.5. If there are undefined symbols
REF command
2 Sample Linker use
.3. Linker error messages-
PASCAL - Sequential Pascal compiler
1 Calling the compiler
2. Executing the program
.3. Temporary files
4 For more information
PACK - Compress files on disc
.1. Using PACK
3.2. Error recovery in PACK
4.14. PREP - Initialise directory on unit
4.15. RENAME - Rename file
4.16. ROMPGM - PROM programming utility
4,16.1. Programming PROMs
4,16.1.1. Erasing the PROM
4.16.1.2. Verifying the PROM is erased
4.16.1.3. Programming the PROM
4.16.1.4. Turning off Program power
4.16.2. Verification of existing PROMs
4.17. SIZE -~ Determine space required for file
4,18. TCOPY - Text file copy utility
4.18.1. Using TCOPY
4.18.1.1. Examples of use
4.18.1.2. Error messages
4.19. WORD - Word processor
4.19.1. Using WORD
4.19.2. For more information

BB DD BB BB bbb

iv



Marinchip 9800 Disc Executive User Guide

Table of contents

System library subroutines

5.1. TEXTIN.REL - Read text input file
8.2. TEXTOUT.REL - Write text output file
5.3. TRACE.REL - Instruction trace

~80
~B1
~83
-85



Marinchip 9900 Disc Executive User Guide

1.. Introduction

The Marinchip 9900 Disc Executive is an operating system £or the
Marinchip 9900 computer system. It provides a comprehensive set
of user services, facility allocation and resource management
features, and requests available to programs running under its
control. Key features of the operating system are:

3 Named files on disc. All disc I/0 is file relative. The
system performs all disc space allocation and detects
attempts to write or read outside file boundaries.

The system contains all I/0 drivers. All system
peripherals are handled as files within the file system.
Programs running under the system can use disc files Or
hardware peripherals such as printers without
modification. All programs running under the system are
independent of the hardware.

The system allocates memory automatically to programs.
Programs running under the system can automatically adapt
to the amount of memory available without regeneration.

. The system provides powerful 1local editing on the
terminal used to run the system. Features include
backspace to correct errors, word delete, and a key that
retypes the current input line as edited. Programs need
not contain code for these functions. Also, the user
sees a consistent terminal interface across all programs.

, The system calls are upward compatible with the Marinchip
Network Operating System.: Any program that runs under
the Disc Executive will also run under the Network
Operating System. This protects the user’s programming
investment when moving to the more advanced system.

. The system command set can be extended simply by writing
user programs. When the system encounters an unknown
command, it simply loads a user program Wwith that name
(if one exists). This allows a custom system to be built
with no modifications to the Executive itself.

2. Using the system from a terminal

This chapter describes the Executive system as seen by the user at
a terminal. This is a complete description of the system for all



Marinchip 8800 Dizc Executive User Guide

users except those coding Assembler programs which call tbe
system. Assembly language interface information will be found in
the chapter "Using the system from a program" later in this
manual.

2.17. Loading the system

Depending upon the system configuration, the system may be either
automatically loaded when power is applied to the machine, or may
have to be loaded from the Marinchip 9800 Debug Monitor. If the
Debug Monitor is configured, the system 1s loaded by entering the
command :

BOOT

When the system has been successfully loaded, the system sign on
message:

Marinchip Disc Executive (Ver. X.X)

will appear, and a period will be typed on the next line. This
period 1is the "command prompt", and will be typed whenever the
Executive is ready for another command. When the period appears,
any of the system commands described below may be entered, or the
hame of any executable file in the file system may be typed. If a
file name is typed, it will be loaded and executed under the
control of the system.

2.2. The file system

2.2.1. Disc files

The Marinchip Disc Executive provides named files on disc, and
files to support all hardware peripherals. File names are twelve
or fewer characters chosen from the upper case ASCII letters, the
numbers, and the special characters:

_s_

Lower case letters, if used, will be treated ldentically to upper
case: there 1s no difference in the hames "Fname" and "FNAME",.
One disc unit in the system configuration 1s referred to as the
"system disc". This unit, always called unit 1, is the unit from



Marinchip 9900 Disc Executive User Guide

which the Executive is loaded, and is the default unit on all file
references. References to file names on system commands are
always of the form:

{unit)/{ filename)>
or: { filename)

In the first case, the file with name (filename) on disc <(unit) is
selected. In the second case, the system disc unit, 1, 1is
assumed. Hence the two specifications:

GNORK and 1/GNORK

are egquivalent. Files with the same (filename)> may exist on any
number of separate disc units simultaneously.

2-2.2,. DEvice £illeg

All system peripherals such as the c¢onsole and printers are
included in the file system. These "Device files" are given
special names within the Disc Executive. All Device Files are
assumed to exist on the system disc, so0 that no <(unit>
specification need be given. The device files present in a system
depend upon the system configuration. Only the console device
file and the parameter string device file are always present. The
standard names assigned to device files are as follows:

CONS.DEV Console

DISCSx.DEV Disc (unformatted access)
PARAM.DEV Program parameter string
PRINT.DEV Hard copy printer

The only restrictions in use of device files stem from their
hardware 1limitations: it 1s meaningless to input from the
printer, or to rewind the console. Attempts at such levity will
normally be ignored by the system.

2.2.3. Common file nomenclature

Since disc files and device files can be used for the most part
interchangably, throughout the rest of this manual they will be
referred to by the generic term (file). Where the manual says a
(file) should be named, either a device file or a disc file may be

used, and either the {(unit)/{filename) or (filename) form of the
name may be used.



Marinchip 8800 Dis¢c Executive User Guide
2.3. User console commands

The Disc Executive contains a minimum set of commands available to
the user from the console. Most of the "commands" typed by the
user for such functions as editing a program, etc., are actually
names of files containing programs that perform those functions.
The following commands are actually performed by the system and,
as such, may not be redefined by the user.

2.3.1. JUMP - Activate program in memory

JUMP (workspace),{entry)

The JUMP command will transfer control to a program in memory at
the address <(entry), with initial register workspace at
{workspace). Both (workspace) and <(entry) are assumed to be
hexadecimal numbers; no leading zero is required before them.
This command is normally only used by machine language programmers
who are patching programs in memory.

2.4. Console support

The Executive contains an extensive handler for the console
through which the user interacts with the system. Since the user
spends so much time using the console, the system goes to great
pains to make the interaction as pleaszant as possible.

2.4.1. Console input

The user may type input on the console whenever a prompt appears
from the system or a program has requested input. Once the first
character of input is typed by the user, all output will be held
until the line is either entered by pressing the RETURN Kkey or
struck out. Several special functions are provided by control
Keys while input is being entered.

2.4.1.1. Line delete

The entire line of input entered so far by the user may be deleted
by pressing the Control X Key (ASCII code CAN). This will echo aX
on the console, throw away the line typed in so far, and retype



Marinchip 9900 Disc Executive User Guide

the prompt for the line (if any). The user may then re-entexr the
input from the start. If the system is configured to use a CRT
terminal (VDU) as the system console, the input line will simply
be erased when Control X is typed.

2.4.1.2. Character delete

The last character typed may be deleted by pressing the Backspace
(Control H) Key. If the console 1s a CRT device, the character
will be rubbed out on the display and the cursor will bPkack up.
Any number of characters may be rubbed out by successive
depressions of the backspace Key. If all characters on the 1line
have been rubbed out, the backspace will be ignored.

2.4.1.3. Word delete

The last word typed may be rubbed out by pressing the Control W
Key. This will delete characters starting from the end of the
line and working towards the start until an alphanumeric character
is encountered. Then alphanumeric characters will be deleted
until a non-alphanumeric is found. This will have the result of
rubbing out the last word entered. If the console 1is a CRT
display, the word will physically disappear from the screen and
the cursor will back up over it.

2.4.1.4. Retype input line

All input line editing with the above special keys is very easy to
understand and use 1if the c¢onsole 1is a CRT display. If the
console 1is a hard copy terminal, however, overtyping many
characters may make it very hard to ascertain just what is about
to be sent as input. Pressing the Control R Key will retype any
prompt for the 1line, then type the current input line as it
stands. The carriage will be left at the end of the input line so
that further corrections may be made, if required. This key may
be used at any time when entering input.

2.4.1.5. Expansion of control characters

ASCII control characters that do not have special editing
functions documented above will be expanded when echoed to an
up-arrow (~) followed by the letter which one presses along with



Marinchip 9800 Disc Executive User Guide

the Control Key to generate the code. This feature allows easy
editing of input containing control characters without . the
confusion of trying to edit characters that aren’t visible.

2.4.1.6. Escape input

Any ASCII character can be entered as input by preceding it with
the Escape key. The Escape will not be echoed, and the character
following it will be echoed directly to the terminal and placed in
the input buffer. This allows carriage return or any of the local
editing characters to be treated as normal characters and input to
a program. Note that to input the Escape character itself two
Escapes must be typed, as the first forces the second as a normal
character.

2.4.2. Console output

Output sent to the console by programs will simply be typed as
sent, except that line feeds will be inserted automatically
following carriage return characters, and delay characters will be
automatically inserted to accomodate the carriage return, line
feed, and form feed delay requirements of the console device.
Note that control characters sent to the console by programs will
not be expanded into the "up-arrow" form. This allows programs to
freely send control characters that perform special functions on
the console device.

2.4.2.1. Output pause

Pressing the Control S key while the output is being sent to the
system console will cause the system to pause at the end of the
next output line. The system will send no more output to the
console until Control S is typed again. Thus, Control S may be
used as a "push-push" switch to halt and resume output.

2.4.3. Console interrupt

An executing program may be interrupted by pressing the Control C
key during console input or output. The input or output will be
aborted. If the program has requested the console interrupt, it
will be diverted to its interrupt point so0 that the interrupt may
be serviced. If the program does not service the console



Marinchip 9S00 Disc Executive User Guide

interrupt, it will be terminated and its workspace registers will
be dumped. :

2.5. Printer support

The system contains a special driver to format data sent to the
device file PRINT.DEV. This driver performs page formatting and
other control functions suited to the printer coonnected toO the
system.

2.5.1. Page formatting

When the system 1s generated, the physical properties of the
printer are selected. The system will automatically format the
page into a top margin, a body portion, and a bottom margin.
Output sent to PRINT.DEV will appear in the body portion. The top
and bottom margins will be left blank, and prevent user data from
being printed across the page perforations.

2.5.2. Printer pause character

When the ASCII ENQ character (code 5) is sent to PRINT.DEV, the
printer will enter a pause state. The printer will immediately
stop, and the console will sound continuous bell signals.
Pressing the space bar on the console will silence the alarm.
When the RETURN key is pressed on the console, the printer will
resume operation. This feature allows a program to cause the
printer to stop at points during the output, permitting the user
to change paper or print elements, or manually insert text in the
output. ) s

2.5.3. Console output to printer

" If the ENQ character (Control E) is typed on the console, the
status of echoing console input and output to the printer is
reversed. Initially, console input and output are not sent to the
printer. Pressing Control E will cause all console input (except
direct mode input) to be echoed to the printer, and all console
output also to be echoed. Pressing Control E again will turn this
mode back off. Control E may be used either during console input
or output, and has no effect other than setting the printer mode
(it will not go into the input Dbuffer if entered as part of



Marinchip 9800 Disc Executive User Guide

console 1input). Console data are echoed to the printer on a line
by line basis, not character by character. As a result, only
"clean" data (after all local editing, etc.) are printed, so this
mode is ideal for preparing samples to explain how to use the
system.

2.6. Unformatted disc support

Normally, disc storage is not explicitly dealt with by the user.
Instead, the user uses the disc through the file system, which
performs allocation and release of space, and lets the user work
with named files rather than absolute addresses. To allow
interchange of information with other systems, the Disc Executive
also allows the user unformatted access to configured disc
storage. For each disc unit in the system, a corresponding device
file exists. For unit "x", this file will be named "DISCSx.DEV"™.
This file simply consists of all the storage on the disc unit,
treated as a single large file. This file may be opened like any
other file, and the normal I/0 calls used to access the storage on
the device. The user must be extremely careful when using this
feature, as the normal protection in the file system is bypassed,
and it is easy to accidentally destroy the contents of a disc
containing Disc Executive files.



Marinchip 9900 Disc Executive User Guide
3. Using the system from a program

The Disc Executive provides three blhasic services to programs
running under its control: a set of system calls to perform
services provided by the Executive, emulation of floating-point
instructions, and a set of common subroutines used by most
software in the system, and provided to reduce the size of the
many programs that use them.

3.1. System calls

All system calls are made using the extended operation facility of
the M9S00 CPU. The XOP 1 instruction 1is reserved for system
calls, and is referred to as JSYS (Jump to SYStem) throughout this
manual. The Marinchip 9900 Assembler recognises the mnemonic JSYS
for XOP 1. The operand of the JSYS instruction is a packet that
contains the code for the request being made and storage for
passing of parameters between the calling program and the
Executive. The format of the packet depends upon the request
being made, but the first byte is always the request index and the
second byte 1s always a status returned by the Executive. A 2zero
status always indicates normal completion of the request.

The following paragraphs will describe the system calls. In the
paragraph heading, the mnemonic for the system call will be given,
followed by the hexadecimal code f£for the request. Parameters
passed to the system will appear as simple names. Parameters
returned will be enclosed in parentheses.

A file which defines the mnemonics for the system calls is
provided by Marinchip Systems on the standard system disc. It may
be included in an assembly language program by the statement:

COPY "JSYSS"”

3.1.1. Process control i e

The following requests control the active program. They are a
subset of the requests in the Network Operating System, which
permits multiple processes in one program.

10



Marinchip SS00 Disc ExXecutive User Guide

3.1.1.1. EXITS (02) Terminate process

The executing program is terminated and the operating system
prompts the user for the next command or program. If the
{termination status) is nonzero, a message will be printed with
the termination status and the address at which the program
terminated. The program’s workspace registers will be dumped.
Setting the (termination status) to a unique code and rerforming
an EXITS is an easy way of indicating an error condition within a
program.

3.1.1.2. TRAPS (0E) Reset interrupt action

-------------------------------------------------------

-------------------------------------------------------

-
-------------------------------------------------------
-
-------------------------------------------------------

-------------------------------------------------------

The TRAPS request allows a program to catch being interrupted by
the Control C key during execution. If the TRAPS call has not
been made and Control C is pressed, the program will be terminated
and 1its workspace registers will be dumped. If the (selection
mask bits) are 1, the console trap will be set. Otherwise, it
Wwill be cleared. The (trap routine address) is where control will
pPass on an interrupt. When an interrupt occurs, <((reent addr)»
Will ke set to the address at which the program was interrupted,
and { (error type, code)) will be set to zero for the console trap.
The first ¢ (additional status)) word will be set to the address of

11



Marinchip 9S00 Disc Executive User Guide

the JSYS packet in progress if the program was interrupted while a
system call was in progress. The second ¢ (additional status))
word 1s reserved for future extensions to the TRAPS request.

3.1.%1.3. MENS (OF) Determine memory limits

PR MEMS : (STATUS)

»
@ o @a 38 » 0 s 8 8 a8 a0 2T e 03880 28823483850 @ @ 5 2 a8 0 0 0 0 e 88 ann 8

.
------------------------------------------------------

-------------------------------------------------------

The MEMS request may be used by a program to determine the start
address and 1length of unallocated memory following the program
itself. The (subfunction)> must be 1 and indicates that the
request 1is for the unallocated memory bounds. (The Network
Operating System uses other subfunctions of the MEMS request.)
The first address following the program will be stored in ( (first
free address)), and the length of the free area in bytes will be
stored 1in the ( (free area length)) field. The ((status)) will be
set to zero, indicating normal completion. If the (subfunction)
is not 1, the request will be rejected and the ((status)> will be
set to 6. This request is particularly useful in connection with
the dynamic memory allocation routines described later in this
manual under "System subroutines™. A program can determine the
size of the unused area following it in memory, establish a buffer
pool in this area using the BEXP$ subroutine, and then allocate
space from the pool. Such a program will automatically use all
the free memory available in a system without having to be
reconfigured as memory is added or removed.

3.1.1.4. EXECS (11) Execute a program

12



Marinchip 9800 Disc Executive User Guide

-
-------------------------------------------------------

The EXECS request allows a program to call another program. The
program called overlays the calling program, so0 there 18 no
return. {command address) is the address of an ASCII string
containing the command to call the program to be executed. The
format of the command is identical to what would be typed on the
system console to execute the program, and may include parameters
following the file name of the program to be executed. <(command
length) is the length of the command in bytes. If the EXECS
request completes normally, the calling program will be terminated
and the requested program will be 1loaded and executed. If an
error occurs, a code indicating the nature of the error will be
returned to the calling program in the {( (status)) field, and the
request will return to the calling program. A status of 3
indicates the file to be executed could not be found in the
directory. A status of 5 indicates the file name specification
was badly formed, and a status of 7 indicates the file named was
not an executable file. Errors detected while 1loading the
requested program will cause an error message to be printed on the
system console and return to operating system command mode.

3.1.2. File control

3.1.2.1. OPENS$ (05) Open a file
........... 6§ﬁﬁé.".......‘;..'......Zéfiféés..-......‘
Nm lllllll “;..'....Eﬁﬁ.iﬁbﬁs""'..-:

@ 2 2 9 8 5 9 9089788080848 808092282 ® # 83 5280050208920 aa083aa086883 809080808

NAME ADDRESS
: A SS mpE e 9o 0 e 8 0 = L ] L N ] L ] :

.
llllll ® 8 8 0 9 0200552009 008000800280 0e80050008380508880 080088883888

The address of the ASCII string contalning the name of the file to

13



Marinchip 9900 Disc Executive User Guide

be opened is placed in <(name address), and the length of the
string is placed in <{name length). If the file is found and
opened normally, <{(status)) will be set to zero, and ((file
index)) will be set to the index used in all subsequent references
to the file. The (access mode) field determines how the file may
be subsequently accessed. If zero, both reading and writing will
be permitted. If 1, only writing will be permitted, and if 2,
only reading will be permitted. If the named file cannot be found
in the directory, {(status)) will be set to 3. If the file name
is badly formatted, ¢ (status)) will be set to 5. There is a limit
on the maximum number of concurrently open files. This limit 1s
specified when the Disc Executive 1s generated and is normally set
to 10 files. If this limit is exceeded, the OPENS request will be
rejected with a {((status)> of 8. Both disc and device files may
be opened by this request. 2All files must be opened before use.
A given file may be open more than once: a separate address
pointer is maintained for each open instance of a file.

3.1.2.2. CLOSES (06) Close a file
.............. ééé..........:.........ié&i&bés.........:
SUSYRENAS ik s ................; ........ fiié.iﬁbéi ..... s ik

The file with (file index) (the number returned when the file was
opened) will be closed. If no file with (file index)> was open,
((status)) will be set to 4.

3.1.2.3. DELETES (0S) Delete a file
¢ B et s ALGATINGRARN iéfiéﬁéi ......... ;
:..........................; .......................... ;

The address of the name of the file to be deleted is placed in
{name address), and the length of the name string is placed in
{name 1length). If the file was deleted properly, ((status)) will
be set to zero. If no file of the specified name was found,

14



Marinchip 9800 Disc Executive User Guide

((status))> will be set to 3. If the syntax of the file name is
bad, {((status)) will be set to 5. Note that a file need not be
open in order to be deleted. If the file is open, it will be
automatically closed.

3.1.3. Input/Output

3.1.3.1. READS (0B) Read from a file
;... ..... ..ééébé ........... ~ABAS « 5O eéfiééés. .........
: .......................... : ........ P.‘].:I.‘E.z.].:h.u;m.:}.{........:
: ceeusscssscccasnas éﬁf@éﬁ.ibﬁéééé .................... &
3 ............... éﬁf@éé.iéﬁéfﬁ.iﬁ.ééiéé.......'....'..‘;
SAREEEREEEETTREEY éé&&ﬁé.éﬁiﬁ ....... S ................. :

The next block of information from the file specified by (file
index) is read into the buffer starting at (buffer address). The
length of the block read is given by (buffer length in bytes).
The actual length transferred is stored in ( (bytes transferred)).
The Disc Executive imposes the restriction that the (buffer length
in bytes) must always be a multiple of 128 bytes. When reading
from a device file such as the console, the actual length
transferred will be the length of the logical unit of information
on the device, such as a line on the console. Input from the
console will end with the carriage return typed at the end of the
line. The <((status)) will be zero for normal completion, 1 for
end of file, and 2 if an unrecoverable 1/0 error occurred. If the
(file 1index> in the packet is incorrect, the ((status)) will be
set to 4. The end of file status will be given only when no
information 1s transferred by the request. A read that starts
within the file and extends past the end of the file will be
truncated to the length of the information remaining in the file,
and a normal status will be given. The <((bytes transferred))
field will contain the length actually delivered to the buffer.

15



Marinchip 9900 Disc Executive User Guide

3.1.3.2. WRITES (0C) Write to a file
; .......... ﬁéiéﬁé ......... AR Bbde el iéﬁé&ﬁéi' . :
:..........................: ........ fiiﬁ.iﬁﬁﬁk .........

; ------ ® 8 e 0 0 0 230 é ------ iﬁ.é&ﬁél!.l.lllnlc-l'll

(BYTES TRANSFERRED)

The information starting at (buffer address), with length (buffer
length in bytes), 1s written to the file specified by <(file
index>. The number of bytes actually transferred (normally the
same except 1in the case of error) 1s stored in { (bytes
transferred)). When writing to a disc file, the Disc Executive
requires that the buffer length be a multiple of 128 bytes. The
values returned in the ( (status)) field for the WRITES request are
identical to those returned for the READS request (see above).
Note 1in particular that an attempt to write with a buffer length
that would extend past the end of a file will cause the length to
be truncated to the length left in the file, but will still return
a zero status in the packet. As a result, programs should test
that the <{((bytes transferred)) field 1s equal to the (buffer
length in bytes) field after a WRITES request and report an error
if the fields differ.

3.1.3.3. SEEKS$ (0D) Set file address pointer

16



Marinchip 8800 Disc Executive User Guide

-------------------------------------------------------

: SEEKS (STATUS)
; M W e e AR e e ; ........ ﬁiié-iﬁbﬁk .........
Sasednenprannane 6féééf.éﬁé§ﬁﬁ.ié'éiéés ........... .

-
-------------------------------------------------------

-------------------------------------------------------

Files are normally processed sequentially. As each READS or
WRITES request is processed, the file address pointer is
incremented by the number of bytes read or written to the file.
To process a file randomly, the SEEKS request may be used to set
the address pointer to any desired value. The field ¢ seek base)
selects to what the seek is relative. If 2zero, the 32 bit
(offset) field 1is the absolute byte number in the file. If one,
the (offset) is added to the current position in the file to
compute the new address pointer. If two, (offset) is relative to
the end of the file. Note that (offset) may be positive or (two’s
complement) negative. At the completion of the command, the new
address pointer will be stored in the {(new pointer)) field. The
pointer may be read by doing a seek relative to the current
position with an offset of zero. The Disc Executive enforces the

restriction that the address pointer always be a multiple of 128
bytes.

3.1.3.4. IOCTLS (10) Set file modes
‘ i . é.. ......;. ........ éé&i&ﬁéi ..........
Boie e s ﬁé .............. : ........ éiié'iﬁbﬁk .........
; ...................... ﬁé'ibéﬁéééﬁ ....................

The IOCTLS request is used to set file modes. The request
operates on the currently open file identified by (file index).
The operations to be performed on the file are specified by a
"function string" whose length in bytes is specified by {string
length)> and whose starting address 1s specified by <(string

17



Marinchip 8900 Disc Executive User Guide

address). The function string consists of one or more type bytes,
followed by data bytes in a format depending upon the type byte.
The Disc Executive supports only one type byte for the IOCTLS
request, a function which sets the system c¢onsole 1into direct
{character by character) input, or returns it to normal (line
buffered) mode. This operation byte has a c¢ode of 1, and 1is
followed by one data byte. If the data byte is 1, the echoing of
characters to the system console will be suppressed, and each
character typed will be passed immediately to a program with a
pending READS request from the console. If the data byte is zero,
the Executive will buffer a line of input, echoing input to the
terminal and providing its normal local editing facilities, then
pass the entire line to the waiting program when the RETURN key is
pressed. Regardless of mode, the Control C key will interrupt the
executing program. The system console will be automatically reset
to normal (echo) mode when a program terminates and the system
command prompt appears. If the IOCTLS operation completes
normally, the ( (status)) field in the packet will be set to zero.
If the <(file 1index)> 18 for a file other than the console, the
{(status)) field will be set to 4, and if the type byte 1is other
than 1, the ((status)) will be set to 6.

3.1.4. System call error codes

When a system call (JSYS) completes normally, the ( (status)) field
in the request packet will be set to zero. When an error occurs,
the <((status)) field is set to a numeric code indicating the
error. The error numbers are common to all requests in that a
given code has only one meaning regardless of which request
returned it. The error codes generated by each request are

discussed in the description of the request, and are summarised
below.

Code - Meaning

Request completed normally

End of file on I/0 request
Unrecoverable I/0 error during request
File not found in directory

Bad file index

Bad file name syntax

Bad subfunction on request

File not executable

Too many concurrently open files

DJdONODBWN=O

18



Marinchip 99800 Disc Executive User Guide
3.2. Program execution environment

When a program is given control by the Disc Executive, certain
information is set up which it may retrieve by making various
system calls. This section describes the execution environment of
a program and how a program may determine this information at
execution time.

3.2.1. Memory allocation

The standard starting address of programs run under the Disc
Executive 1s 100 hexadecimal. Programs generated by the Linker
will normally be started at this address. The area below 100
hexadecimal 1is reserved for the  exclusive use of the Disc
Executive and must not be modified by ‘programs. The area of
memory from the end of the user program to the start of the Disc
Executive in high memory is available for use by the program (for
example, for a buffer pool). The starting address and length of
this area can be determined by use of the MEMS system call.

3.2.2. 1Initial workspace

When a program is given control after being loaded by the Disc
Executive, it will be given an initial set of workspace registers.
This set of registers is located in an area of memory configured
when the system is generated, and should be used by the user
program. The user program is free to switch to other register
workspaces at will with the LWPI and BLWP instructions, but use of
the initial workspace allows the program to automatically adapt to
the presence of a fast workspace memory area if one is available
on the machine on which the program is executed.

3.2.3. Program parameter string

When a program is called from the system console, parameters may
follow the file name. This parameter string may be used to rass
information to the program being called without having to prompt
the user for the information. The system saves the parameter
string (all characters following the file name) in an internal
buffer, and allows the program to read it via the pseudo device
file "PARAM.DEV". The file PARAM.DEV may be opened like any other
file. When the READ$ request is issued on the file index returned
from the OPENS request for PARAM.DEV, the parameter string will be

19



Marinchip 9900 Disc Executive User Guide

returned to the buffer address specified in the READ$ request
packet. The parameter string will be terminated by a carriage
return character, which will be included 1in the count of
characters returned.

3.3. Floating point emulation

»

The Disc Executive provides emulation of IBM System/370 single
precision floating point instructions. Emulation of instructions
is requested by the XOP 2 instruction, which 1s defined 1n the
Marinchip Assembler as FLOP (FLoating OPeration). The effective
address of the FLOP instruction is a packet structured as follows:

3 DESTINATION ADDRESS

--------------------------- ‘@ W8 ® ® © @ 8 ® 5 @ ® @ 8 ® a4 0 % 5 o U s S ® L O

The <{(opcode) field selects the function to be performed by the
instruction. The action taken by different (opcode)s is described
below. The Network Operating System does not include the floating
point emulation package, so programs developed for use under both
the Disc Executive and the Network Operating System should use an
alternate subroutine version of the floating point package,
supplied by Marinchip Systems with the Network Operating System
and described in its User Guide.

33841 .1. AES (01) .. - -Floating add -

The floating point number aﬁﬂthe address given by (source address)
is added to the floating point number at {(destination address).
The result is stored at {(destination address).

3.3.1.2. SES$ (02) Floating subtract

The floating point number at the address given by (source address)
is subtracted from the floating point number at {(destination
address). The result is stored at (destination address).

20



Marinchip 8900 Disc Executive User Guide
3.3.1.3. MES (03) Floating multiply

The floating point number at (source address) is multiplied by the
floating point number at {(destination address). The product is
stored at (destination address).

3.3.1.4. DES (04) Floating divide

The floating point number at {(source address) is divided into the
floating point number at (destination address). The quotient is
stored at {(destination address).

3.3.1.5. CES (05) Floating compare

The numbers at (source address) and <{(destination address) are
compared, and the status bits are set depending upon their
relative values. The arithmetic and logical status bits are set
the same, so0 that either set of instructions may be used to test
the result of the comparison.

3.4. System subroutines

The Disc Executive makes a set of generally useful subroutines
available to programs running - under its control. These
subroutines are used within the Executive itself, and are rrovided
to encourage programs to use a common set of functions for the
services they provide. The subroutines are called via a system
subroutine entry vector in low memory. Each location in the
vector contains a jump to the actual subroutine entry point. The
subroutines should always be called through the entry vector to
allow them to be moved within the system from release to release.

The following table 1lists the entry addresses of the system
subroutines. Each entry gives the entry address in hexadecimal,
the mnemonic for the entry name, and a brief description of the
function provided. Refer to the descriptions of the actual
su?ioutlnes below for full information on how each should be
called.

The mnemonics £or the system subroutine entries are defined in a

flle provided by Marinchip Systems on the standard system disc.
This file may be included in an assembly with the statement:

21



Marinchip 8800 Disc Executive User Guide

COPY nSYSUBS™

Entry Mnemonic Description

080 BGET Allocate buffer

084 BGETA Allocate buffer with error return
088 BREL Release buffer

OE8 BEXP Expand buffer pool

0oD8 INSERT Place buffer at end of queue

oDC PUSH Place buffer at head of dqueue
0OEO REMOVE Remove buffer from head of queue
0OE4 INITQ Initialise queue links

08C EDITS Initialise output editor

0S80 EDITXS Terminate output editor

094 EDITRS Re—-enter output editor

098 ECHARS Edit a character

0sC ESKIPS SKip columns

OAQ ECOLS Tab to specific column

0A4 ECOLNS Retrieve current column

0AS8 ECOPYS . . Copy text

0AC EMSGS Copy until stop character

0Co EMSGRS Continue copying after stop char
0C4 EMSG1$ Copy till stop, don’t save location
(8]02°] EHEXF'S Edit fixed length hexadecimal
0cC EHEXVS Edit variable length hexadecimal
0DO0 EDECFS Edit fixed length decimal

0D4 EDECVS Edit variable length decimal

The subroutines provided by the system are in three majorxr
categories as listed above: dynamic memory allocation, linked
list maintenance, and output editing. Each package will be
described below.

3.4.1. Calling sequence conventions

All system subroutines destroy only the registers in which results
are returned, and register R11 if they are called with a BL
instruction. All registers in which parameters are passed, and
all registers not mentioned in the description of the subroutine
may be assumed to be preserved across a call on that subroutine.

22



Marinchip 9800 Disc Executive User Guide
3.4.2. Output editing package

The system provides a comprehensive set of subroutines that may be
used to construct messages to be read by users or placed in files.
The package provides most commonly used editing functions and
eliminates the duplication of effort in recoding such routines in
every program written. The package 1s completely table-driven,
and may be used to compose multiple independent messages
concurrently.

3.4.2.1. Edit mode

A program wishing to use the output editing package must supply a
packet containing information about the area to be edited into.
The packet is 32 bytes in length. The single byte at offset 14 in
the packet is the message delimiter character to be used by EMSGS,
EMSGR$, and EMSG1$S (see below). The word at offset 18 in the
packet 1s the address of the buffer where the edited output is to
be placed. The length of the output buffer is placed in the word
at offset 20. The rest of the packet is used by the editing
routines for temporary storage, and is all the storage used by the
editor: the editing package is totally reentrant. Once the
packet has been defined, the program must enter edit mode.

3.4.2.1.1. EDITS - Enter edit mode
LI RO ,{packet)>
BL EDITS
{return) R12 set to packet

When called, EDITS initialises the packet from the information
supplied by the user, blank fills the output buffer, and sets the
column pointer to the first character in the output buffer. The
original contents of R12 is saved in the packet, and R12 is set to
point to the packet. As 1long as the program 1s calling the
editing routines, R12 must be left polinting to the packet.

3.4.2.1.2. EDITXS - Terminate edit mode
BL EDITXS

{return> RO = packet, R12 restored
The EDITXS call terminates edit mode. Upon r_eturn, R12 will be

23



Marinchip 9800 Disc Executive User Guide

restored to its contents at the time EDITS was originally called.
The address of the packet will be returned in RO. After
terminating edit mode with EDITXS, the output buffer may be used
in any manner desired. A . subsequent call to EDITS will
reinitialise the buffer. If desired, the user may terminate edit
mode with EDITXS, do some other processing, then re-enter edit
mode with EDITRS (see below) and pick up right where he left off.

3.4.2.1.3. EDITRS - Re-enter edit mode
LI RO,{ packet>
BL EDITRS
{return> R12 = packet

The EDITRS request re-enters edit mode with a packet that has
previously been left with EDITXS. The output buffer 1is not
blanked, and the column pointer is left wherever it was at the
time EDITXS was called. Note that a packet used with EDITRS must,
at some time, have been initially set up by EDITS: it is not
possible to use EDITRS for an initial entry to edit mode.

3.4.2.2. The column pointer

All editing done by the editing package is performed at a location
defined by the "column pointer". Characters in the output buffer
are numbered from zero to the number of characters in the buffer
minus 1. When the package is initialised, the column pointer is
set to zero, and hence points to the first character in the
buffer. All of the editing subroutines store characters into the
output buffer starting at the current column pointer, and advance
the column pointer as they store. In addition, several routines
manipulate the column pointer alone without modifying the
information in the output buffer.

3.4.2.2.1. ESKIPS - Position column pointer relative
LI RO,{count>
BL ESKIPS
{return)

The <{(count? 1in RO is added to the current column position.
{count) can be either positive or negative, so the pointer can be
either advanced or backed up over information previously stored.
Note that ESKIPS does not blank £ill the columns skipped: if

24



Marinchip 9800 Disc Executive User Guide

information has previously been edited into them, it will be
preserved.

3:4.2:2.2. - BECOLS - Position column pointer absolute
LI RO ,{colum)
BL ECOLS
{return)

The column pointer will be set so that {column’> will be the next
character into which information is stored. Setting (column) to
zero will return to the start of the output buffer.

3.4.2.2.3. ECOLNS - Retrieve current column number

BL ECOLNS
{return) RO = column

Upon return from ECOLNS, user register RO will contain the column
number of the column pointer. This call is commonly used to

determine the 1length of a 1line Just composed with the editing
routines.

3.4.2.3. Character editing

The character editing entries allow either single ASCII characters
or strings of characters to be placed in the output buffer. These
routines advance the column pointer as characters are stored.

3.4.2.3.1. ECHARS - Store single character
LI RO ,{character)
BL ECHARS
{return)

The single ASCII character right-justified in RO is stored in the
output buffer at the current column position. The column pointer
is advanced one character.

25



Marinchip 9800 Disc Executive User Guide

3.4.2.3.2. ECOPYS - Copy character string
LI RO,{string start>
LI R1,{length>
BL ECOPYS
{return>

The string of characters starting at the address {string start)
with length (length) is copled to the output buffer. The c¢olumn
pointer 1s advanced by the number of characters stored. The
{string start) address need not be aligned on a word boundary.

3.4.2.3.3. EMSG1$ - Copy string to stop character
LI RO,;{string start)
BL EMSG18
{return>

The string starting at (string start) 1is copied to the output
buffer character by character until the character supplied in byte
14 of the packet passed to EDITS is found. This request allows a
string to be specified in a manner more convenient and compact
than by counting the characters in the string and using ECOPYS.

3.4.2.4. Message editing

Most messages generated by programs consist of fixed information
with variable information inserted by the program. The message
editing entries allow easy composition of such messages.

3.4.2.4.1. EMSGS - Start message editing
; & 4 RO,{ message address)
BL EMSGS
{return)

The message starting at {(message address) will be copied into the
output buffer character by character until a stop character equal
to the character in byte 14 of the packet passed to EDITS is
found. The address of the character following the stop character
will be saved in the packet. The column pointer is advanced once
for each character stored in the buffer.

26



Marinchip 8800 Disc ExXecutive User Guide

3.4.2.4.2. EMSGRS - Continue message editing

BL EMSGRS
({return>

EMSGRS works exactly like EMSGS, except the image copied starts at
the address saved by the last EMSGS call. EMSGRS copies to the
next stop character, then saves the address of the character
following the stop character. EMSGS$ and EMSGRS allow portions of
a message to be copied, pausing periodically to insert information
in the message using the other editing routines.

3.4.2.5. Numeric editing

The editing package includes entries to edit 16 bit numbers to
either hexadecimal or decimal. Both variable length and fixed
length editing is provided.

3.4.2.5.1. EDECVS - Variable length decimal edit
LT RO ,{(value)
BL EDECVS
{return)

The value in RO will be edited as a decimal integer. If the sign
bit is set, a minus sign will be edited before the number. EDECVS
edits only the number of characters required to hold the number
edited to decimal: for example, the number 1 would occupy one
character, 234 would require three, and -16255 would require six.
The column pointer will be left set after the last digit edited.

3.4.2.5.2. EDECFS - Fixed length decimal edit
7 ~ RO,{(value)
LI R1,{length>
BL EDECFS
{return>

The wvalue 1in RO is edited right-justified in a field whose width
1s specified by R1. The column pointer is left after the last
digit edited. If the number supplied in RO requires more
characters to edit than the field size contains, it will overflow
the field to the right. Characters in the field into which digits

27



Marinchip 9900 Disc Executive User Guide

are not edited will be unchanged: hence it is possible to edit
with leading zeroes or check protection by pre-editing the desired
£i11 into the field, backing up with ESKIP$S or ECOLS, then
overlaying the number in the field with EDECFS.

3.4.2.5.3. EHEXVS - Variable length hexadecimal edit
Ll RO,(value)
BL EHEXVS
{return

The value passed in RO is edited to hexadecimal as an unsigned 16
bit integer. If the value in RO is larger than S, a leading 2ero
will be edited, following the system convention that a leading
zero signifies hexadecimal. The column pointer will be left after
the last digit edited.

3.4.2.5.4. EHEXFS - Fixed length hexadecimal edit
LI RO,{value>
LI R1,{length)>
BL EHEXF'S
{return>

The value passed in RO is edited right-justified in a field with
length passed in R1. 2ll characters in the field before the first
nonzero digit of the edited number will be filled by zeroes. The
column pointer will be left immediately following the last digit
edited. If the value is too 1large to £fit in the field size
supplied, the high-order digits will be truncated. This means,
for example, that the low byte of RO may be edited simply by
supplying a count of 2 in R1.

3.4.2.6. Sample use of the editing package

The following program fragment uses the editing routines to build
an error message as might be generated by a compiler. Note how

the various routines are used to insert specific information into
the "canned" message text.

¥4 9 RO,EPKT Load editor packet address
BL EDITS Start up the editor

LI RO ,ERRMSG Load error message address
BL EMSGS Copy message

28



Marinchip 9200 Disc Executive User Guide

MOV LINENO,RO Load line number of error
BL EDECVS Edit it to decimal
BL EMSGRS Copy to value
MOV BADVAL,RO Load the bad value
LT R1,4 Load length to edit
BL EHEXF'S Edit value to hexadecimal
BL EMSGRS Copy rest of message
BL ECOLNS Get number stored
MOV RO ,OUTLEN Save output message length
BL EDITXS Terminate the editor
EPKT BSS 14 Editor packet
BYTE ’&’,0 Stop character and fill
BSS 2
DATA OUTBUF, 80 Output buffer and length
BSS 10
OUTBUF BSS 80 Output buffer
ERRMSG TEXT ‘Error on line &. Bad value &%.&’

3.5. Storage and linked list subroutines

The dynamic memory allocation and linked list subroutines share a
common workspace area and calling sequence conventions. As a
result, they will be discussed together here. In order to use
these routines, the user must provide a workspace area and buffer
pool control storage. This area is formatted as follows in an
assembly program:

BHEAD DATaA BHEAD, -1 ,BHEAD,BHEAD Buffer pool head

PWS EQU $-16 Primitive work space tag
BSS 4 Space for R8, RS
DATA BHE2AD Storage head pointer
BSS 10 Space for R11 - R185

The various routines are entered via the BLWP instruction through
a set of context switch vectors supplied by the user. These
vectors reference the workspace defined above, and the entry point
to the proper subroutine name. The entry vectors are commonly
given the same name as the subroutine name, but followed by a
dollar sign. A definition for an entry vector for all the buffer
allocation and linked list routines is as follows:

INSERTS DATA PWS , INSERT

29



Marinchip 8900 Disc Extecutive User Guide

PUSHS DATA PWS,PUSH
REMOVES DATA PWS,REMOVE
INITQS DATA PWS,INITQ
BGETS DATA PWS ,BGET
BGETAS DATA PWS ,BGETA
BRELS DATA PWS,BREL
BEXP$S DATA PWS ,BEXP

A workspace area and entry vector, formatted as given above, 1s
supplied by Marinchip Systems in the file "PRIMWS" on the standard
system disc, and may be 1included 1n an assembly with the
statement:

COPY "PRIMWS"

3.5.1. Dynamic memory allocation routines

The dynamic memory allocation routines maintain a pool of free
spacé, allocating buffers from it, releasing them back to it, and
allowing space to be added to the pool at any time. The allocator
uses a free list chain technique which allows buffers to be
allocated with the size the user requested, and does not limit the
user to a potentially wasteful power of two size as do many "buddy
system" schemes. The overhead storage used to control the buffers
allocated amounts to only eight bytes per buffer. When space is
released and the adjacent space 1is an available buffer, it is
combined into one large area, so that fragmentation problems are
minimised.

3.5.1.1. BEXPS - Add space to buffer pool
LI RO,{ length of area to add>
LI R1,{address of area to add)
BLWP BEXPS

{return>

The buffer pool defined in the initial workspace for the
allocation routines is void: no free space is provided. Before
allocation may begin, the user must supply the raw pool of storage
from which buffers are to be allocated. This is done with the
BEXPS call. The area passed is typically the area from the end of
the code portion of the program to the end of system memory, hence
all free memory is automatically available for buffers. RO should
contain the 1length of the area in bytes, and R1 should point to
the first byte in the area to be added to the buffer pool:
neither need be even. BEXPS can be called at any time to add

30



Marinchip 8800 Disc Executive User Guide

additional storage to the buffer pool. For example, some programs
initially define their buffer pool with BEXP$, then after all
their initialisation is complete, release the area occupied by the
initialisation code itself into the buffer pool.

3.5.1.2. BGETS - Allocate a buffer: error if none
LI R1,{size in bytes)
BLWP BGETS
{return> R1 = buffer allocated

The BGETS entry will allocate a buffer of the requested size and
return its address in R1. If there 1is insufficient space to
allocate a buffer of the requested size, the program will be
terminated with an error code of 010. Programs which wish to
handle the out of buffers situation themselves should use the
BGETAS request, described below. Note that buffers allocated by
BGETS will always start on a word boundary.

3.5.1.3. BGETAS - Allocate a buffer: return if none
LI R1,{(size in bytes)
BLWP BGETAS
DATA {insufficient space)
{return> R1 = buffer allocated

A buffer will be allocated with the size requested in R1 and its
address will be returned in R1. If insufficient storage remains
to allocate a buffer of the requested size, the routine will
return at the address specified for (insufficient space). Buffers
allocated by BGETAS will always start on a word boundary.

3.5.1.4. BRELS - Release buffer
LI R1,{buffer address)
BLWP BRELS
{return>

The BRELS entry returns a buffer allocated by BGETS or BGETAS to
the available space pool. The address passed in R1 on the call to
BRELS must be an address previously returned by BGETS or BGETAS.
To add storage outside the buffer pool to it, use the BEXPS
request, documented above.

3



Marinchip 9900 Disc Executive User Guide

3.5.1.5. Buffer allocation errors

The buffer allocation routines will terminate the requesting
program if certain errors are detected. The error code used to
terminate the program indicates which error was detected. The
following are the error codes generated by the buffer allocation
routines:

010 No space for buffer on BGETS. This error
causes an abnormal return to the program 1f
BGETAS 18 used instead of BGETS.

011 Attempt to release unallocated buffer via
BRELS. Check address passed to BRELS.
012 Backpointer in next buffer was bad. This will

result if the program using the buffer stored
off the end of the buffer, and may also result
if a bad address if passed to BRELS.

3.5.2. Linked list routines

The following subroutines manipulate doubly 1linked 1lists of
buffers. Each list is defined by its "list head", which is a two
word (four byte) block of storage arranged as follows:

--------------------------------------------
)
--------------------------------------------

-
--------------------------------------------

The back 1link points to the last buffer on the queue, and the
forward 1link points to the first buffer on the queue. If there is
only one buffer on the queue, the forward and back links will both
point to that buffer. If the queue 1is empty, both 1links will
point to the address of the queue head itself. Buffers to be
Placed on the queue must have a two word area at the start
reserved for dqueue links. The 1link area at the start of the
buffer will be used for back and forward links exactly like those
in the dueue head. Storage after the 1link area may contain
anything the user desires, and is in no way examined or
manipulated by the queue routines.

32



Marinchip 9800 Disc Executive User Guide

3.5.2.1. INITQS - Initialise queue links
LI R9,{queue)>
BLWP INITQS
{return)

The 1links in the two word area whose address is passed in RS will
both be set to point to the address in RS. This 1initialises an
area of storage as an empty queue. This can also be easily done
by user code, and is provided only as a convenience and to
encourage dynamic creation of queue heads.

3.5.2.2. INSERTS - Insert buffer at queue end

LI R8,{buffer)
LY RS ,{ queue)
BLWP INSERTS
{return)

The buffer whose address is passed in R8 is chained at the end of
the dqueue whose head address is passed in RS. Only the links in
the first two words of the buffer pointed to by R8 will be
changed.

3.5.2.3. PUSHS - Insert buffer at queue start
LI R8,{buffer)
LTI RY,{queue)
BLWP PUSHS
{return»

This entry 1is identical to the INSERTS entry described above, but
the buffer is placed at the start of the queue instead of the end.
A buffer placed on a queue with PUSHS will always be the first to
be removed by a subsequent call on REMOVES.

3.5.2.4. REMOVES - Remove next buffer from queue

LI RS,{queue>
BLWP REMOVES
{return» R8 = buffer

The first buffer on the queue will be removed from the quene and

33



Marinchip 8900 Disc Executive User Guide

its address will be returned to the user in RS8. The address
returned will be the address of the first link word in the buffer,
which is the same address passed to INSERTS or PUSH$S when the
buffer was placed on the queue. If the queue was empty, R8 will
contain the address of the queue head itself wupon return. This
allows the empty condition to be tested simply by comparing the
address returned in R8 with the queue address still in RS. Hence,
a remove with empty test would be coded as-follows:

LI RS, MYQUEUE Load queue address

BLWP REMOVES Remove next buffer

C R8,RS Was queue empty ?

JEQ EMPTY Yes. Don‘’t do anything

34



Marinchip 9900 Dis¢c Executive User Guide

4. System utility programs

The Disc Executive supports a wide variety of software packages,
including compilers, assemblers, debug packages, and utilities.
This section of the manual will describe all of the standard
programs which are called by commands from the system console.
For many commands, this documentation is complete. For complex
software packages such as the assembler or Pascal compiler, a
brief command description is included and the user is referred to
the appropriate manual for further information.

Several of the utility programs described in the following
sections are actually different names for a common program called,
for historical reasons, "the shell"™. This program, which is
stored in the file SHELLS$.OBJ, is automatically called by the Disc
Executive when any of the commands it implements are entered. The
fact that all of the vital file-oriented commands are performed by
4 single program makes the task of setting up new system discs
much more simple, as only that program need be copied onto a new
disc. The commands currently implemented in SHELLS .0BJ are BCOPY,
CREATE, DELETE, DIRECT, PREP, and RENAME.

35



Marinchip 9800 Disc Executive User Guide
4.1. ASM - Assembler

The Marinchip Assembler 1s an expression-oriented relocatable
assembler for the Marinchip 9800 computer. It accepts a source
syntax largely compatible with the Texas Instruments 9900
assembler, and produces relocatable code completely compatible
with that used by Texas Instruments.

4.1.1. Calling the assembler

The assembler is called with a command of the form:
ASM (reloc)>=({source’[,{listing>]

where <(source) 1is the name of the file containing the source
program to be assembled, {reloc) is the name of the file in which
the relocatable output of the assembler 1s to be stored, and
{listing) is the optional file where the assembly listing is to be
written. If no <(listing) file is specified, no listing will be
generated, but lines with assembly errors will still be listed on
the system console. If the assembly listing is sent to a disc or
device file other than the console, lines with errors will still
be logged to the console.

4.1.2. For more information

Refer to the manual "Marinchip 99800 Assembler User Guide" for
complete information on writing assembly language programs and
using the assembler.

36



Marinchip 9200 Disc Executive User Guide
4.2. BASIC - BASIC interpreter

Marinchip BASIC is a comprehensive implementation of the BASIC
language, with extensions for string processing, file access, and
interface to hardware devices. BASIC precompiles the program to
speed execution speed, and automatically operates in integer or
floating point mode as required by the program. Marinchip BASIC
provides immediate execution of statements, a symbolic statement
trace, and the ability to pause execution, modify a program, and
resume it. These features greatly ease the debugging of complex
programs.

The BASIC present in a given system may be either the standard
Marinchip BASIC, or Extended Commercial BASIC, an optional
software package which also provides 16 digit decimal accuracy for
numbers, random access files, CHAIN between programs with common
variables, and the ability to save precompiled code files and
execute the under a special runtime system which occupies less
memory than the complete interpretive BASIC. Consult the person
responsible for software maintenance at your installation to
determine which BASIC is available on the machine you use.

4.2.1. Calling BASIC

BASIC is called by simply typing its name:
BASIC

When loaded, it will issue a command prompt ">", and await a
command . The user can either enter a program, load a previously
written program, or use BASIC as a desk calculator by entering
BASIC statements without line numbers.

4.2.2. For more information

Refer to the manual "Marinchip 8800 BASIC User Guide" for complete
documentation of the BASIC language and the Marinchip
implementation.

37



Marinchip 9900 Disc Executive User Guide
4.3. BCOPY - Binary file copy

BCOPY performs a binary (transparent) copy between two files. It
permits data to be transferred regardless of its content, and thus
allows creation of an exact copy of the input. BCOPY 1s invoked
by a command of the form:

BCOPY (output )=( input) ,{ number>

{output) is the name of the output file and (input) is the name of
the input file. BCOPY will copy the data from the input file ¢to
the output file. If the optional <{(number)> specification 1s
supplied, the copy will be terminated after {number) blocks of 128
bytes have been copied. If <(number) (and the preceding comma) are
omitted, the copy will continue until either the end of the 1input
file, the end of the output file, or an I1/0 error ocCcurs. BCOPY
will always print the number of blocks copied, and will indicate
the reason for termination of the copy, unless the reason was the
satisfaction of a (number) specification.

4.3.1. Examples of use

To copy a file PROG1 into a file called BKPG1, BCOPY would be used
as follows:

BCOPY BKPG1=PROG1

To copy the first 10 blocks of the file SAVFIL into the file
MYPROG, one would use:

BCOPY MYPROG=SAVFIL,10
4.3.2. Restrictions - device files and BCOPY

BCOPY may be used without restriction on disc files. When it is
used with device files, the user must be aware of the fact that
input from many device files (for example, the system console) is
rarely the standard block length, 128. Since the Disc Executive
requires blocks written to a disc file to be multiples of 128
bytes, BCOPY cannot be used to transcribe from a device file to a
disc file. Transfers in the other direction (disc file to device
file) will cause no problems. TCOPY, the text copy utility, will
serve for most of the applications where transcription from a
device file to a disc file 1is required. TCOPY is also more
efficient for such applications since it buffers the input into

38



Marinchip 8800 Disc Executive User Guide

128 byte blocks. See the section later in this manual describing
TCOPY for more information.

4.3.3. Messages

Error: Specify (ofile)=(ifile),{number)
This message 1s given when the parameters to BCOPY are
bad or omitted.

{number) blocks copied.
This message will appear at the end of the copy to
indicate the number of (128 byte) blocks copied.

Copy terminated by end of input file.
This message is issued when the end of the input file is
reached. Note that this message will appear when the
input and output files are the same size.

Copy terminated by error reading input file.
The operating system has returned an error status on a
read of the input file.

Copy terminated by end of output file.
This message is issued when the end of the output file is
reached and information remains to be copied from the
input file. The user should be careful that no valid
information was lost in the truncation.

Copy terminated by error writing output file.
The operating system has returned a nonrecoverable error
writing a block to the output file.

File (filename) does not exist.

The named file (input or output) could not be found in
the file directory.

39



Marinchip 9800 Disc Executive User Guide
4.4. BRAINS - BRAINSTORM diagnostic package

BRAINSTORM is a comprehensive processor and memory diagnostic
developed by Marinchip Systems for the Marinchip 8800 computer.
BRAINSTORM includes both confidence tests, which test the computer
under a simulated worst-case program situation, and diagnostic
tests, which aid in the 1solation of specific problems and their
correction.

4.4.1. Running BRAINSTORM

BRAINSTORM runs under any Marinchip operating system, and uses the
operating system for all of its I/0. As a result, the diagnostic
need not be reconfigured when system peripherals change. The
package itself occupies the memory between 100 and 2000 hex, SO
any area after 2000 is available for memory testing. BRAINSTORM
is invoked from operating system command mode simply by typing the
file name containing the program. In standard released systems,
this file is named "BRAINS". Following the file name 18 a
parameter that specifies the test to be run. The format of the
parameter is a single character test identifier, an equal sign,
and a list of parameters specific to the test selected. The
available tests are as follows:

M Memory diagnostic
P Processor (CPU) diagnostic

4.4.1.1. Memory diagnostic

The memory diagnostic is invoked by the parameter string:
M=( start addr),{(bytes to test),(passes)

where (start addr) is the first address to test, (bytes to test)
is the length of the area to be tested in bytes, and <(passes) is
the number of times the test is to be run before automatically
terminating. The (start addr) and (bytes to test) specification
will be rounded down to even word addresses if odd addresses are
specified. For example, assuming BRAINSTORM is in the standard
file name "BRAINS", and you wished to test 1000 hex bytes (4096
decimal) starting at address 6000 hex, and you wished the test to

iterate 50 times, the command typed in to the operating system
would be:

BRAINS M=6000,1000,50

40



Marinchip 9800 Disc Executive User Guide
Note that the first two parameters are automatically scanned as
hexadecimal, and the third is automatically scanned as decimal.

Before starting the test, the parameters will be confirmed by the
message:

Brainstorm now testing 6000 through 6FFF, 50 times.

If an error is detected, a two line error message will appear of
the form:

Error in memory test (test description)
Address (fail addr): Expected (good), received <(bad).

The (test description) is the number and name of the specific
subtest that failed (see below). The (fail addr) is the address
which failed. <(bad) is what was read from the address, and {(good)
is what was expected by the test.
At the end of each pass through the test, the message:

End pass (pass).

will appear. If any errors occurred on this pass of the test, the
message:

{count) errors.
Wwill be appended to the "End pass" message. If any errors have
occurred earlier in this execution of BRAINSTORM, whether on the
most recent pass or not, the message:

Total errors (count).

will appear at the end of the "End pass" message.
4.4.1.1.1. Memory subtests

The following paragraphs describe the subtests performed by
BRAINSTORM. One pass through the memory test consists of running
each subtest once, in the order listed below.

4.4.1.1.1.1. 1A: Clear to zero

Each word in the test area 1is cleared to all 2zero bits, then
immediately read back and tested against zero. Fallure to clear

41



Marinchip 9900 Disc Executive User Guide
is failure of this test.
4.4.1.1.1.2. 1B: Set to all ones

Each word 1in the test area is set to all one bits, then
immediately read back and tested against all ones. Failure of all
bits to set is considered a failure.

4.4.1.1.1.3. 2A: 8Sliding one bit

A pattern of a single one bit with all other bits zero is written
through each word in the test area. Each word is read bhack after
being written and tested against the pattern written. Failure to
compare is a failure of the test. After all words in the test
area have been completed, the pattern is shifted one bit right,
and the test is performed again. The test starts with the pattern
8000 hex and completes with 0001 hex.

4.4.1.1.1.4. 2B: 8Sliding zero bit

A pattern of a single zero bit with all other bits one is written
through each word in the test area. As each word is written, it
is immediately read back and tested against the pattern stored.
After all words have been tested, the pattern is shifted
circularly one bit right, and the test continued until all 16
possible patterns have been tested. The test starts with the
pattern 7FFF hex and ends with the pattern FFFE.

4.4.1.1.1.5. 3: Address interference test

This test is intended to detect shorted address lines and failing
address decode hardware in memories. Each word in the test area
1s tested. To test a specific word, it is set to the hex pattern
1234. Then each address bit in the address of the word under test
i1s inverted. If the address generated by inverting the bit is
still within the test area, the pattern DEAD is stored in that
address. After all possible addresses within the test area
generated by inverting bits of the original address have been set
to the pattern DEAD, the original word is read back and tested.
If 1t has been changed from the original value of 1234, the
address interference test has failed. The test is repeated until
all words in the test area have been tested. This test is most

42



Marinchip 9800 Disc Executive User Guide

effective 1f run over the entire addressing range of a memory
component, as excluding even a small region will eliminate some
possibly defective address bits from the scrutiny of this subtest.
If this test fails, the problem is almost certainly a shorted
address lead or other decoding error that is mapping two different
addresses into the same memory cell. Careful examination of the
error messages generated by this test should lead to the specific
failing component. (The output from the next subtest, Addressing
Validation, may also be useful).

4.4.1.1.1.6. 4: Addressing validation

The addressing validation test simply writes the address of each
location in the test area in the cell at that address. After all
locations have been so set, they are read back and tested ¢to
contain their own address. This subtest detects addressing
failures more subtle than those detected by the Address
Interference test above. :

4.4.1.1.1.7. 5: Byte addressing -

This subtest writes an ascending value, modulo 256, into all bytes
in the test area. When all bytes have been set, the area is read
back byte by byte and tested against the expected value. Since
byte addressing is performed in the M9900 processor itself by
masking the 16 bit data, this is more of a processor test than a
memory test. It is included since it may detect particular memory
timing problems that only appear in the case of byte addressing.

4.4.1.2. Processor diagnostic

The processor diagnostic is invoked by the parameter string:

P=(passes)
where <(passes) is the number of times the test is to be repeated
before terminating. The diagnostic will test various internal
operations of the processor in each pass of the test, and type an
"End pass." message at the end, exactly like the Memory diagnostic
(see above). If a failure is detected, a message of the form:
Error in CPU test: {type) instruction failure.

will be typed, and that pass of the test will be immediately

43



Marinchip 9900 Disc Executive User Guide

terminated. {type)> describes the subtest that failed. The
possible values of (type) are:

Basic shift/AND/OR
BLWP/RTWP/status register
ABS

aAdd

Add bytes

INC/DEC

SWPB

Multiply

Divide

Jump odd parity
SZC/SZCB

SOCB

These refer to the instruction whose failure most 1likely led to
the failure of the subtest. Since the entire arithmetic and
logical processor is integrated onto a single IC, a failure of the
CPU test generally indicates that the CPU chip must be replaced.
Bad memory, however, may often cause the CPU test to fail, so CPU
chip failure (a VERY rare occurrence) is indicated only when the
memory diagnostic runs without error and the CPU test fails.

44



Marinchip 8900 Disc Executive User Guide
4.5. CREATE - Create a file

CREATE (file),(size>
or CRE (file),(size)

The CREATE command creates a file on a disc. If the (file) named
includes a {(unit) specification, the file will be placed on that
unit. Otherwise, the file will be allocated on the system disc.
The (size) is expressed in terms of 128 byte sectors. CREATE will
scan the directory of the unit on which the file is being placed,
locate the "best fit" for the size requested, and enter the file
in the directory of that unit. If a file by the same name already
exists, it will be deleted automatically. If there 1s no free
block on the unit large enough to hold the requested file size,
the message:

Insufficient contiguous space for file.
will be issued and the CREATE command will be ignored. If a
DIRECT reveals that there is enough total space for the file but

no single block large enough, the PACK command may be used to
recover the fragmented space, then the CREATE will succeed.

45



Marinchip 9900 Disc Executive User Guide
'4.6. DELETE - Delete file or group of files

The DELETE utility may be used to delete a single file, or may bhe
used to delete a group of files based on selection criteria
supplied by the user. DELETE is invoked by a command of the form:

DELETE (file),...
or DELETE (selection),...
or DEL ...

If called with a conventional file name, DELETE will delete that
single file. If the specification contains the characters "?" oOr
™", it is taken as a selection specification designating a group
of files. If a character of the (selection) specification is "?",
files with any character in that position will ke processed. A
specification of the form:

NAME. X

will choose all files with NAME before a period in a file name and
any text after the period, while specifiving:

Xx.TYP

chooses all files with any name and the text TYP after the period
in the name. To choose all files on a volume, any of the
following specifications may be used:

{unit))/
<unit)>/???2?2?2?222?2?2?7?
or {unit)/Xk.x

When a <(selection) specification is used, DELETE will prompt the
user with each file name about to be deleted. If the user answers
the prompt with "Y", the file will be deleted. If the prompt is
answered with "N", the file will not be deleted.

46



Marinchip 9900 Disc Executive User Guide

4.7. DIRECT - List file directory

The DIRECT utility lists file directories. DIRECT may be used to
list the directory entry for a single file, all files on a disc,
or groups of files chosen by masking their names. The directory
listing may be either typed on the system console, or sent to a
printer. DIRECT may be invoked with any of the following
specifications:

DIRECT <{unit)/,...
DIRECT (file),...
or DIRECT {selection),...
or DIR ...

The first form of the command lists all files on the specified
disc unit. Three files will be listed on each line of output from
DIRECT, allowing more files to be seen before scrolling off the
top of a display.

The second form of the command, naming a file, will 1list the
directory item for the named file.

The third form of the command specifies a {selection) which names
a group of files for which the directory items are to be listed.
If a character of the (selection) specification is "?", files with
any character in that position will be processed. A specification
of the form:

NAME . X

will choose all files with NAME before a period in a file name and
any text after the period, while specifiying:

Xx.TYP

chooses all files with any name and the text TYP after the period
in the name.

Regardless of the form of call used, the item for each file will
be printed in the format:

FILENAME size start

where "FILENAME" is the file name, "size" 1is the file size in
sectors, and "start" is the starting block number on the disc.
When listing all files on a unit, a summary line will be printed

giving the total free space and the largest contiguous free block
available on the unit.

47



Marinchip 9900 Disc Executive User Guide

Multiple specifications may be given to DIRECT, separated by
commas. The action of DIRECT is the same as if each specification
were given on a separate DIRECT command. If any specification 1s
preceded by a plus sign, "+", the 1listing generated by that
specification will be sent to the print device, PRINT.DEV. This
permits printed directory listings to ke made for later reference.
For example, to print the directories of both unit 1 and unit 2,
one might use:

DIRECT +1/,+2/

48



Marinchip S900 Disc Executive User Guide
4.8. DU - Disc utility

The Marinchip Disc Utility provides the functions necessary to
test, format, dump, patch, and prepare floppy discs for use with
Marinchip operating systems. Two versions of the Disc Utility are
available. The standard version, supplied with the Disc Executive
release disc, uses the disc handler within the Disc Executive. -
This allows the Disc Utility to be smaller, and usable on any
system without special configuration, but restricts its ability to
perform I/O functions not available through the system (such as
formatting discs). Special versions of the Disc Utility
containing handlers for specific disc devices can be ordered from
Marinchip Systems. Contact your dealer or Marinchip Systems for
price and ordering information.

4.8.1. Using the disc utility

The Disc Utility is loaded and executed simply by typing its name,
DU, to the operating system. The Disc Utility will be loaded and
will prompt the user for a command with an asterisk (X). At this
time, any disc utility command may be typed. At the completion of
each command, the - prompt will reappear. When you have finished
with the disc utility, enter the command "END". It will exit to
the operating system.

4.8.1.1. Disc utility commands

All disc utility commands are one or two characters in length.
Any number of spaces may precede the command name, and at least
one space must follow the command name if any parameters follow.
In the following command descriptions, the parameters expected
will be enclosed in corner brackets. The format of the parameters
is as follows:

{disc> This parameter is the disc number. Discs in the system
are numbered starting from one through the highest
numbered disc in the system. =

{track) This parameter is the track number on the selected disc.
Tracks are numbered from 0 to 76, for a total of 77
tracks on each disc.

{sector) This parameter 1is the sector number within the selected

disc and track. Sectors, for some strange reason, are
numbered from 1 to 26. One of the most common parameter

439



Marinchip 8800 Disc Executive User Guide

errors is trying to reference sector zero. There 1is no
sector zero!

Wherever a specification of the form:
{disc),{track>,(sector)

is used to identify a specific sector, the alternate construction:
{disc).{(block>

may be used. The (block) refers to the absolute sector number on
the disc, with the first sector considered as 2ero. This
alternate specification form can be useful when using the Disc
Utility on Disc Executive formatted discs, as the file directory
addresses sectors by block number, rather than track and sector
numbers.

4.8.1.1.1. A - Dump in ASCII -

A (start byte),(wdrd count?

The ASCII dump command dumps the contents of the sector buffer in
ASCII. If all parameters are omitted, the entire buffer will be
dumped. If a start byte is specified; the word containing that
byte will be dumped. If both a start byte and a length are
specified, the number of words requested will be dumped starting
with the selected byte. The sector buffer is read by the "R"
command and written by the "W" command, both described below.

4.8.1.1.2. CD - Copy disc

CD {(disc> {(disc>
This command copies the entire contents of the first disc to the
second disc. It is a fast and effective way to back up the
contents of one disc on another. Any data previously stored on
the second disc will be destroyed. This command requires the user
to confirm that it is OK to wipe out the data on the second disc.
If the command:
cD. .1 3
is typed, the question:

Really want to destroy data on disc 3°?

50



Marinchip 8800 Disc Executive User Guide

will appear. This must be answered "yes" before the operation
will begin. Any other answer will cause the command to be
ignored.

4.8.1.1.3. CT - Copy track

CT (disc),{track) {(disc),{track)

This command copies an entire track from the first <(disc),({track)
to the second. Note that the source and destination tracks may be
different.

4.8.1.1.4. D - Dump in hexadecimal

D (start byte),{word count)

The Dump command dumps the contents of the sector buffer in
hexadecimal. If all parameters are omitted, the entire buffer
will be dumped. If a start byte is specified, the word containing
that byte will be dumped. If both a start byte and a length are
specified, the number of words requested will be dumped starting
with the selected byte. The sector buffer is read by the "R"
command and written by the "wW" command, both described below.

4.8.1.1.5. END - End disc utility

END

The End command causes the Disc Utility to terminate. Control
will return to the operating system.

4.8.1.1.6. N - Read and dump next sector

N

The sector following the last sector read by an R, RA, or RD
command is read and dumped. The sector is dumped in the format
last used to dump a sector. The N command is Primarily used when

reading through a disc looking for some particular data. The

?ddgess gf the sector being read will be printed before the =ector
S dumped.

51



Marinchip 9900 Disc Executive User Guide
4.8.1.1.7. PA - Patch buffer

PA (start byte>

This command allows the contents of the sector buffer to be
patched. If <{(start byte) 1is omitted, zero is assumed. The
command will display the current offset and the contents of the
word at that offset. If a carriage return is typed, the next word
will be displayed. If a number 1s entered, it will replace the
word at the current location. An up-arrow (A) will cause the
previous word to be displayed, and a right corner bracket ())
followed by a number will set the offset to that byte address.
Numbers entered for this command will be assumed decimal unless a
leading zero appears before the number, in which case hexadecimal
will be assumed. Entering an at sign (@) will stop the Patch
command and return the user to normal command level.

4.8.1.1.8. R - Read into buffer -

R <(disc),{track), sector)
This command reads the selected sector into the sector buffer.

Once read in, the data may be dumped by the "D" command, patched
by the "PA" command, and written back out by the "W" command.

4.8.1.1.8. RA - Read and dump in ASCII

RA (disc),{track),{sector)
This command reads the selected sector into the sector buffer and

then dumps it in ASCII. The action of this command is identical
to an "R" command followed by a "A" command.

4.8.1.1.10. RD - Read and dump in hexadecimal
RD (disc),{track),{sector)
This command reads the selected sector into the sector buffer and

then dumps it in hexadecimal. The action of this command is
identical to an "R" command followed by a "D" command.

52



Marinchip 8800 Disc EXecutive User Guide
4.8.1.1.11. VD - Validate disc

VD (disc)
This command reads every sector on the selected disc. If any
errors occur, they will be logged and the command will continue.
This command is intended for incoming inspection of new discs and

periodic checking to make sure that no bad sectors are lurking on
a disc.

4.8.1.1.12. VT - Validate track

VT (disc),{(track)
This command is identical to the Validate Disc command described
above, but only one selected track is validated.

4.8.1.1.13. W - Write

W (disc),{(track),{ sector)

The data in the sector buffer are written out to the selected
sector.

4.8.1.1.14. WB - Write back

WB

The data in the sector buffer are written back to the sector from
which they were originally read with the R, RA, RD, or N command.
The WB command may be used only if no intervening command which
reads into the sector buffer has been used Since the sector was
originally read. The WB command is normally used to write back
data read in with the R command, then patched via the PA command.

83



" Marinchip 9900 Disc Executive User Guide
4.9. EDIT - Text editor

The Marinchip Text Editor (EDIT) is a line-oriented context editor
based on the Project MAC editor originally developed at MIT. The
editor offers powerful interactive editing taking full advantage
of the full-duplex terminal support and instantaneous response
offered by the Disc Executive. The editor uses the file system to
automatically page files larger than memory to disc to allow files
much larger than system memory to be edited without explicit user
effort.

4.8.1. Calling the editor

The most general form of call on the editor is:
EDIT {output file)=(input file)

Either or both of these file names may be omitted, with results
illustrated by the examples given below.

EDIT MYFILE Reads in MYFILE, and stores
output back in MYFILE.

EDIT NEW= Creates file NEW from text
entered from the console.

EDIT =LISTNG Reads in file LISTNG to be
examined, but not updated.

EDIT NEW=0OLD Reads 1in file OLD, stores
updated output in file NEW.

EDIT Gives user complete control
over input and output
handling via editor
commands.

4.8.2. Using the editor

A description of editor commands is beyond the scope of this
manual. The user 1s referred to the user guide for the editor
(see reference below) for a description of the editor commands.

54



Marinchip 9900 Disc Executive User Guide

4,9.3. Temporary files

If the file being edited is larger than memory, the editor will
use the two system standard temporary files, "TEMP1$" and
"TEMP2S", to page the file. Each of these files must be larger
than the file being edited. If these files are missing, the
message "Buffer impasse." will be given and additions to the Ffile
will not be permitted.

4.9.4. For more information

Refer to the manual "Marinchip 8300 Text Editor User Guide" for
descriptions of editor commands, and further information about how
to call and use the editor.

55



Marinchip 9800 Disc Executive User Guide
4.10. FDIAG - File diagnostic

FDIAG is a program which tests I/0 on a disc file, and by
implication tests the disc storage that underlies the file and the
operating system’s file handling software. The program is invoked
by a command of the form:

FDIAG (file name)

where <{(file name) is the file to be tested. THIS FILE WILL BE
OVERWRITTEN, DESTROYING ANY DATA PREVIOUSLY IN THE FILE. The user
can test a specific disc unit or area by placing a file there,
then calling the file diagnostic specifying that file.

4.10.1. File diagnostic operation

The file diagnostic operates by writing unique patterns in
successive blocks (128 bytes) of the file until the end of file is
reached. Then, the file is reset to the beginning with the SEEKS
request and the file 1s read back. The data in each block is
validated for internal consistency, and then checked to make sure
that the sector read was the expected sector. The test continues
until the end of file is reached. If the test finds no errors,
nothing will be printed.

4.10.2. Error messages

Cannot open named file.

The file named on the FDIAG command could not be found in
the file directory.

Write error on block < number).
The operating system returned an error status on the

write of the specified block. The file diagnostic
terminates.

Seek error.
’ The operating system returned an error status on the
SEEKS$ request to reset the file to the beginning. This

indicates a software error in the operating system or the
file diagnostic itself. ‘

Read error on block ({number)>.

The operating system returned an error status on the read
back of the specified block. The diagnostic continues

56



Marinchip 8800 Disc Executive User Guide

with the next block.

Bad data for block <{number). First bad byte is <(number).
(Expected value: <(number))

There was a data error in the block that was not detected
by the operating system’s disc handler. The diagnostic
detected the error by internal redundancy in the block.
The failing block number, first bad byte, and the
expected value are printed on the error message, then the

block 1s dumped in hexadecimal. The test continues with
the next block.

Wrong block read. Expected: {number ), received: {number)

The block read was internally consistent, but is not the
block that was written at the address that was read back.
This error indicates an addressing problem in either the
disc hardware or the operating system’s file handler.

57



Marinchip 9800 Disc Executive User Guide
4.11. LINK - Linker

The Marinchip Linker 1s used to build an executable program from
the relocatable code produced by the Assembler or the high-level
language compilers. The Linker is controlled by simple commands
entered from the user‘’s terminal, and accepts its input and places
its output in normal operating system files. The Linker generates
straightforward English error messages for all abnormal events
that ocour during the process of 1inkKing. The Linker uses a
virtual memory paging technique to allow itself to build programs
larger than the memory available to the Linker as a workK area. In
fact, the Linker can produce programs larger than the memory
available on the machine on which it 1s being run. This can be
useful as programs for other users with larger memories can ke
generated on a minimal machine.

4.11.1. Linking a program

The linker may be used in two modes: normal mode, where commands
are entered from the Keyboard and the linking process is performed
in an interactive mode, and shorthand mode, where all the 1linking
information is entered on the line that invokes the linker.

4.11.1.1. Shorthand linking

In shorthand mode, the linker is called by typing the statement:
LINK <out>=[@]<in1),[@]<1n2>,.b1

to the operating system when at command level. "LINK" is the name
of the linker, (out) is the name of the executable file to be
created, and <(ini1)>, <(in2), etc., are the names of the relocatable
files that are to make up the executable program. If the name of
an input file is preceded by an at sign (@), it is assumed to be a
text file containing Linker commands (see below for descriptions
of commands), rather than a relocatable file. If the input files
named satisfy all external references, the executable file will be
created and the 1linker will terminate normally. If undefined
symbols remain, they will be listed, and the 1linker will enter
normal interactive mode (see below) to allow the user to load
files which define the undefined symbols. '

For example, to create an executable program called "OBJ" from

relocatable files named "MAIN", "CSUB1", "CSUB2", and "CSUB3", the
following command would be used:

58



Marinchip 9900 Disc Executive User Guide
LINK OBJ=MAIN,CSUB1,CSUB2,CSUB3
4.11.1.2. Normal interactive linking

The Linker is called from the command mode of the operating system
by simply typing its name, LINK. The operating system will load
the Linker and execute it. When the Linker receives control, it
will prompt the user for a command with a sharp sign (#).

4.11.1.2.1. Defining the output file

Once the Linker has been called, the user must specify in which
file the executable file is to be placed. The OUT command is used
to do this. The statement:

OUT (file name)

informs the Linker that the executable program is to be placed 1in
the file (file name). Only one OUT statement may be used in any
call on the Linker.

4.11.1.2.2. Specifying the program base

Normally the Linker will create an executable program starting at
address 0100, the standard system starting address for user
programs. The user can override this assumption by supplying a
BASE command before the first input file is named. The statement:

BASE (address)

will cause the executable program to be built starting at the
specified hexadecimal (address) (that is, relocatable code will be
loaded starting at that address). This feature is primarily of
use when generating the operating system, or when writing programs
intended to concurrently reside in memory. Normal user programs
need not specify a BASE statement. The specified base address
should be a multiple of 256 bytes (0100 hex). If the address
supplied 1is not a multiple of 256, it will be rounded down to the
preceding 256 byte boundary.

59



Marinchip 9800 Disc Executive User Guide
4.11.1.2.3. Naming the input file(s)

Once the output file has been specified, the user should specify
all the programs that are to be linked together to make up the
executable program. This will always include the main program
created by the Assembler or compiler, and will frequently include
other separately assembled or compiled subprograms, oOr programs
from the system 1library. The files containing the relocatable
object code for these programs should be named on one or more IN
commands. The statement:

IN (file name),{file name),...

will 1link the named files into the executable program. Oone oY
more <(file name)s may be specified on the IN statement, and any
number of IN statements may be used.

The references between separately compiled programs are made by
means of external and entry symbols. These symbols are identified
by six character names in both the program defining them and any
programs referencing them. As programs are built into the final
executable program, the Linker matches up these symbols and
resolves the references to them. If after the execution of an IN
statement there are references still undefined, the Linker will
prompt the user for the next command with a minus sign (-) instead
of the normal sharp sign (#). The user can then, if desired, list
the still-undefined symbols by using the REF command (see below).
If the main program is IN‘’d first, the linking process is complete
when the - prompt goes away, since all references will have been
satisfied.

The IN statement may also be used to cause the Linker to process a
set of commands stored in a file. If a file name on an IN command
is preceded by an at sign (@), then the commands from that file
will be read and processed as if they were entered directly from
the keyboard. Any Linker command may be used in a command file,
and command files may be nested 1limited only by the system’s
restriction on concurrently open files and the amount of available
memory. For example, 1if the file NEWPROG.LNK contains the
commands to link a program, it would be invoked by:

IN @NEWPROG.LNK

4.11.1.2.4. Table of contents files

The LOCATE command (which may abbreviated to LOC) specifies a file
containing a table of contents of a library of subprograms. The

60



Marinchip 9800 Disc Executive User Guide

statement:
LOC (file name),{file name),...
identifies each of the (file name)s as a table of contents file.

Each table of contents file is a text file containing one or more
lines. Each line identifies a separately assembled or compiled
subprogram file and names the external symbols defined in that
subprogram. A table of contents statement is of the form:

{ subprogram file name) <{symbol),{symbol),...

where (subprogram file name) is the file name of the relocatable
file exactly as it would be used on an IN statement to include it
in the 1link, and the (symbol)s are the external symbols defined in
that subprogram.

When the 1linker reaches the end of a link (indicated by the END
statement, see below), if there are any undefined external
references, it will search the table of contents file entries in
the order they were specified on the LOC statements, and attempt
to resolve the undefined symbols. If the inclusion of a file
based on its appearance in a LOC list results in the appearance of
a4 new undefined symbol, the LOC list will be searched again in an
attempt to resolve it. This process will continue until either
all external symbols have been resolved, or a search of the LOC
list fails to resolve any outstanding symbols, in which case the
Linker will abandon the search.

When performing an interactive link, it is frequently desired to
see if the LOC files specified will resolve the undefined symbols
outstanding at some point in the 1link. The FETCH command, which
is simply the statement:

FETCH
wWill cause the LOC list search to be performed exactly as it is

done at the end of the link, but the Linker will not terminate at
the end of the FETCH.

4.11.1.2.5. Listing the memory map

At the end of the linking process, the memory map may be listed by
entering the statement:

MAP [+[{title>]]}

61



Marinchip 9900 Disc Executive User Guide

This will type one 1line for each program loaded. The program
name, defined via the IDT assembly directive, or by a
specification in the compilation, will be listed followed by the
address at which that program starts and the last address occupied
by that program. This MAP is useful in program debugging, since
it permits turning absolute addresses in the linked program back
into relative addresses in the programs that made it up.

If nothing follows the MAP command, the memory map will be typed
on the user’s terminal. If a plus sign (+) follows the MAP
command, the map will ke printed on the standard printer,
PRINT.DEV. If the plus sign 1is used, it may be followed by a
title to be printed on the printer before the memory map 1is
listed.

4.11.1.2.6. Closing out the program

After all the files that make up the program have been loaded by
naming them on IN commands, all that remains is to tell the Linker
to write the executable program into the output file. This 1is
done by the statement:

END

If there are any unresolved external symbols at the time the END
statement is entered, they will be listed following the warning
message "Undefined symbols:". The presence of undefined symbols
will not prevent the output program from being generated, but will
cause it to error if any of the symbols are referenced during
execution. After the Linker has written the executable program to
the output file, it will exit to the operating system.

4.11.1.3. Comments

Comments may be included in the input to the Linker as lines which
contain a period in column 1. Such lines are ignored by the
Linker, but are useful to identify files used with the "@" feature
on the IN command.

4.11.1.4. Executing the program

Programs generated by the Linker may be executed simply by typing
the name of the file containing them to the operating system when
it expects a command. The file containing the user program will

62



Marinchip 8900 Disc Executive User Guide

be loaded and executed.

4.11.1.5. If there are undefined symbols

If you have named all the files that make up your program on IN
statements and are still getting the "-" prompt that indicates the
Linker still has undefined symbols, the command:

REF

may be used to list them. The format of the listing will be one
line for each symbol containing the text:

{symbol) of (program)

where (symbol) is the undefined symbol name and {program’> 1is the
name of the program that referenced it. Note that a symbol may
appear in more than one message if it is referenced by more than
one program.

4.11.2. Sample Linker use

The following presents an annotated example of using the Linker to
construct a program. Let us suppose the user’s main program
object code has been put in the file MAIN by a compiler, and that
subprograms SUB1, SUB2, and SUB3 are used by the program in MAIN.
The object code for these three subroutines are in the files
CSUB1, CSUB2, and CSUB3 respectively.

.LINK The user loads the linker
from the operating system
command level.

#OUT OBJ The Linker prompts the user
with a sharp sign, and the
user names the output file
OBJ to hold the generated
program.

#IN MAIN The prompt reappears, and
the user uses the IN
command to name the main
program.

-IN CSUB1 The user gets the "-u
prompt indicating that more
flles are needed. The file
CSUB1 1s named.

-REF The user decides to list

63



Marinchip 9900MDisc Executive User Guide

undefineds.

SUB2 of MAIN The Linker lists them

SUB3 of MAIN

SUB3 of SUB1 Note that SUB1 also

v references SUB3.

-IN CSUB2,CSUB3 The user names the rest of
the required files.

#MAP The linker is happy and
returns to the sharp sign.
The user requests a memory
map.

MAIN 0100-02CD The map 1s typed out

SUB1 02CE-030B

SUB2 030C-03FB

SUB3 03FC-0511

#END The user asks to end
linking

.OBJ And calls his progran

Enter the first data point: The user’s program 1s 1in
control

4.11.3. Linker error messages

The following error messages can be generated by the Linker; each
is explained. When there is a common user e€rror that causes this
error, it will be mentioned.

Bad character "(char)" as item type.
The character <{char) was found in the object code file
and is not valid. This normally occurs when the file you
mention on an IN statement is not an object file created
by the Assembler or a compiler.

Bad character in number field.
A bad character was found in a numeric field of object
code. Suspect clobbered object code file or trying to
load non-object code.

Input file I/0 error.
Error reading file on IN statement. Was it properly
created by the Assembler or compiler? This can also
result from a disc hardware error.

Duplicate starting address in program {prog) ignored.

64



Marinchip 8800 Dis¢ Executive User Guide

The program <{(prog>, which was just named on an IN
statement 1is a main program with a starting address, but
another main program has already been loaded. The first
starting address will be used for the program being
linked.

Duplicate definition of {symbol) ignored in {prog.
The program {prog> defines symbol <{(symbol), but this
symbol has already been defined in another program
previously named in an IN statement. The second
definition is ignored.

Absolute origin of <(addr) in <{prog) is below base of <(base):
ignored.

The program {prog) contains absolute 1load information
which attempts to load below the Linker’s standard load
base. This most often results from misuse of the AORG
directive in Assembly programs.

Checksum error.

The program being 1loaded has a checksum error in the
object code. Has it been modified?

Checksum missing from record.

The program being loaded lacks a checksum on a record.
Has it been modified?

End-of-record sentinel missing.

The program being loaded has a malformed record. Has it
been modified?

Internal error: origin below load base.

If you have a program that causes this error, Marinchip
Systems would like very much to see it.

Error swapping out rage.
Error swapping in page.

These messages are caused either because the file named
on the OUT statement was too small to hold the program
being 1linked, or by a hardware error on the output file.

Bad input file specification.

65



Marinchip 9900 Disc Executive User Guide
The file named on the IN statement does not exist, or the
file name is not well formed.
Bad output file specification.

The file named on the OUT statement cannot be creéted, or
the file name is not well formed.

output file already specified.
An OUT statement was entered, but an output file was
already defined by a previous OUT statement. The second
QUT statement 1s ignored.

No output file specified.

Aan IN statement has been entered, but no OUT statement
has been entered vet. The IN statement is ignored.

Cannot open entry table. Processing continues.
The LOC specified < file name) cannot be found.

Entry table file input error.

The LOC specified (file name) could not be read in.
Insufficient table space.

The LOC-generated cross reference list of symbols and the
files in which they were defined overflowed available
memory space. Use a shorter list, or IN the required
files explicitly instead of using LOC.

66



Marinchip 8800 Disc Executive User Guide
4.12. PASCAL - Sequential Pascal compiler

Marinchip Pascal is based on the Sequential Pascal compiler
developed by Per Brinch Hansen for the PDP 11/45 at Caltech.
Marinchip Systems has converted the compiler to run on the M9900
CPU and has interfaced it to use the I/0 facilities of the Disc
Executive, permitting it to interchange files with all other
Marinchip software.

4.12.1. Calling the compiler

The Pascal compiler is called with a command of the form:
PASCAL((source),(listing>,<object))

where <(source) is the Pascal- source progrém to be compiled,

{listing) is the disc or device file where the compiler listing is

to be sent, and <(object) is the file in which the object code
generated by the compiler is to be stored.

4.12.2. Executing the program

An (object) file produced by the compiler is executed simply by
typing its name. No linking process is required.

4.12.3. Temporary files

The Pascal compiler requires that the files "TEMP1$" and "TEMP2S"
be present on the system disc. If these files are not present,
the compilation will abort with an error message.

4.12.4. For more information

See the manual “harinchip 8800 Pascal User Guide" for more
information on the Pascal compiler.

67



Marinchip 9900 Disc Executive User Guide
4.13. PACK - Compress files on disc

The Disc Executive allocates and stores files contiguously on
discs. The file allocation process attempts to maximise the
contiguous space available, but the process of file creation and
deletion may result in the space on a disc becoming fragmented so
that even though there is enough free- space to create a new file,
no single block is large enough to hold 1it. The PACK utility
compresses the files on a disc and ¢ollects all the free space
together into one block. After running PACK on a disc, a file may
created on it with a size equal to the total free space available.

4.13.1. Using PACK

PACK 18 called with a command of the form:
PACK [x)}unit)/

where <{(unit) 1is the disc unit where the disc to be PACKed is
mounted. If no leading asterisk is specified, a "safe pack" will
be done. If the leading asterisk is supplied, a "fast pack" will
be performed. The difference between a safe and fast pack 1is
explained in the following section. The following are examples of
PACK commands:

PACK 2/
PACK %2/

4.13.2. Error recovery in PACK

During the course of PACKing a disc, it is possible that all
directory items may be changed and all files on the disc moved to
new locations. This massive transformation on a disc makes the
impact of an I/0 error potentially catastrophic. PACK makes every
effort to avoid errors and to minimise their effects.

If PACK is called with no leading asterisk, a "safe pack" will be
done. In this form of PACK, after moving each file, the directory
will be updated to reflect the changes. Normally, an I/0 error
during a safe pack will destroy at most only the one file being

copied, and then only if its new location overlaps its old
location.

If PACK is called with a leading asterisk, all files will be
moved, and then the directory will be written out at the end. An

68



Marinchip 8800 Disc ExXecutive User Guide

I/0 error during a fast pack will usually totally destroy the
contents of the disc.

In the case of error, PACK always analyses the damage done and
reports it to the user. Because any PACK may result in the 1loss
of some data if an I/0 error happens, we urge you to first back up
a disc using the CD command in DU before performing a PACK. If a
backup 1s first made, then you may do a fast pack with impunity,
knowing that 1if the PACK destroys the disc, you can always go back
and recopy your backup and try again.

69



Marinchip 9900 Disc Executive User Guide
4.14. PREP - Initialise directory on unit

Before files may be created on a new disc, a Disc Executive file
directory must be created first. Only once the file directory is
present may CREATE be used to allocate files on the disc. PREP is
used to create that file directory. PREP is called by the
command :

PREP <unit)/[,{specification’...]

where (unit) is the disc unit containing the new disc to be
PREPed. If no {(specification’s are given, the disc will be set up
as a normal single density, single sided disc. The directory will
be allocated to hold up to 140 files.

When using double density or double sided discs, {(specification)’s
are used to inform PREP of the modes in which the discs will be
used. Note that PREP simply writes out the Disc Executive
directory, and assumes that the disc it 1is processing has been
previously formatted for access. While single density, single
sided discs may be used right out of the box without formatting,
is is usually necessary to format discs to be used in double
density or double sided modes. Refer to the documentation for the
FORMAT program for the disc system~you are using for information
on disc formatting.

The specification "DS" causes the disc to be marked double sided.
The file storage capacity and directory capacity are doubled.
Note that in a system with double sided drives, a disc MUST be
prepped with the "DS" specification if it is physically a double
sided disc (as indicated by the index hole placement).

The specification "DD" causes the disc to be marked double
density. The file storage capacity and directory capacity are
doubled. A disc may be both double density and double sided. In
this case the directory and file storage capacity will be four
times that of a normal single density, single sided disc.

If a number appears as a {(specification), the file directory on
the disc will be allocated to provide space for the specified
number of files. This form of specification may be used to
override PREP’s assumed directory sizes for special applications.

Examples of PREP commands are:

PREP 2/ - Single density, single sided
PREP 2/,DD - Double density, single sided
PREP 2/,DS - Single density, double sided
PREP 2/,DS,DD - Double density, double sided

70



Marinchip 8900 Disc Executive User Guide

PREP 2/,DD,S500 - Double density, 500 file directory

Before writing a new directory on a disc, PREP examines the disc
to see if a directory previously existed. If either a Disc
Executive or Network Operating System directory is present on the
disc, PREP will ask the user:

Really want to destroy data on disc (unit)>?
which the user must answer "YES" before PREP will write the new
directory to the disc. This query protects against inadvertant

destruction of data by PREP, while still allowing discs to be
re-PREPped without being reformatted.

7



Marinchip 8900 Disc Executive User Guide

4.15. RENAME - Rename file

The RENAME utility permits you to change the name of a disc file
without affecting the information stored in the file. The call:

RENAME ( new name)=(o0ld name)

will change the name of disc file (o0ld name) to {(new name). If
one name i1s of the form "(unit)/{ filename’ ", both names must be of
that form, and the (unit)s must agree. If no file with (old name>
can be found, or a file with (new name) already exists, an error
message will be given, and no change will occur.

For example, to rename file GARBAGE.TXT to be called BACKUP.WRD,
one would use:

RENAME BACKUP.WRD=GARBAGE.TXT

72



Marinchip 9900 Disc Executive User Guide
4.16. ROMPGM - PROM programming utility

The Marinchip PROM Programming Utility allows 2708 PROMs to be
programmed using the Cromemco Bytesaver PROM Programmer. The PROM
Programming Utility programs the PROM, then verifies that the data
has been correctly stored.

4.16.1. Programming PROMs

4.16.1.1. Erasing the PROM

The PROM to be programmed should first be completely erased by
exposing it to a short-wave ultraviolet lamp. Make sure that the
PROM 1s completely erased, as an incompletely erased PROM may
surprise you with random data drop-outs at elevated temperature or
after a period of time. Follow the exposure recommendations for
the eraser you are using, and don’t short cut the erase time, NOT
EVEN ONCE. This paragraph is written from cruel experience. The
experience that PROMpted this warning 1is one that cannot be
recommended to any other sentient being.

4.16.1.2. Verifying the PROM is erased

An erased 2708 PROM will have all bits set. To verify that the
PROM 1s completely erased, insert it in one of the Bytesaver
sockets, then bring up the system and enter the command:

ROMPGM E=( slot)

where <(slot) is the socket number in the Bytesaver where the PROM
was placed. If the PROM is properly erased, nothing will be
printed. If unerased words remain, their address and contents
Wwill be dumped. When a PROM fails erasure verification, insert it
back 1n the eraser and try again.

4.16.1.3. Programming the PROM

The data to be placed in the PROM should be loaded into RAM. Make
sure that the PROM programming utility does not overlay the data
you are placing in PROM. The "Program power"™ switch on the

73



Marinchip SS00 Disc Executive User Guide

Bytesaver should be turned "ON", then the command to invoke the
PROM programming utility should be entered. From operating system
command level, this is:

ROMPGM P=(slot),{start addr>
or ROMPGM PE=(slot),{start addr>
or ROMPGM PO=(slot),{start addr>

where (slot) is the socket number in the Bytesaver where the PROM
to be programmed has been placed (the sockets are numbered zero to
seven, right to left, and the numbers are below the sockets on the
board), and <{start addr) i1s the address in RAM where the data to
be programmed into the PROM starts. The (start addr) must be an
even word address. The process of programming takes about two
minutes. After programming is complete, the PROM 1s read back and
compared with the data in RAM. If the data matches, the PROM
Programming Utility simply exits to the operating system. If
errors are found, a line will be printed for each word that failed
to compare. The error messade 1s as follows:

{RAM addr>: <(RAM data> <(PROM addr>: <(PROM data>

where (RAM addr)> and (RAM data) are address and data from RAM, and
{PROM addr> and {PROM data’ are the address and data in PROM. 1If
the error or errors seem to be the failure of a few bits to set to
zero, try programming the PROM again. Some less-than-prime PROMs
take more than the recommended number of programming passes to
program all bits. If the PROM data is all FFFF, make sure the
"Program power" switch is on.

If the PE= or PO= forms of the program command are used, the data
to be written into the PROM will be taken from the even or odd
bytes, respectively, of the 2K area starting at (start addr). In
other words, the command:

ROMPGM PE=0,4500

will write the contents of byte 4500 into the first byte of the
PROM, the contents of byte 4502 into the second byte of the PROM,
the contents of byte 4506 into the third byte of the PROM, etc.
If the PO= command had been used, bytes 4501, 4503, and 4507 would
have been copied to the PROM. The PE and PO commands are useful
when a program that has been developed in RAM is to be placed in
16 bit wide PROM, where all the even bytes reside in one PROM and
the odd bytes in another PROM.

74



Marinchip 5800 Disc Executive User Guide
4.16.1.4. Turning off Program power

When the PROMs have been programmed, make sure you turn off the
"Program power" switch on the Bytesaver. FAILURE TO DO THIS WILL
CERTAINLY LEAD TO ZAPPING ALL THE PROMS IN THE BYTESAVER. Since
systems using the Bytesaver normally use it to hold the Debug
Monitor and Disc Boot PROMs, this means that the system will be
down until those PROMs can be reprogrammed. Marinchip Systems can
furnish, on request, information on how to modify the Bytesaver to
prevent destruction of PROMs in selected sockets.

4.16.2. Verification of existing PROMs

ROMPGM can also be used to verify a PROM against data in RAM
without first programming the PROM. If called:

ROMPGM V=( slot),{ start addr)
or ROMPGM VE=(slot),{start addr)
or ROMPGM VO=( slot),({start addr)

the verification of data in the PROM in the designated (slot) will
be carried out against the data at (start addr), and any
discrepancies will be 1listed in the format explained in the
section "Programming the PROM™ above. Since ROMPGM automatically
verifies data following programming, this feature 1is pPrimarily
useful for verifying existing PROMs against a master data file.
If the PE= or PO= commands were used in creating the PROM (see
"Programming the PROM" above), the VE= or VO= command must be used
when verifying programming. It will cause the data for
verification to be loaded in the same manner as the data used in
programming the PROM.

75



Marinchip 9800 Disc Executive User Guide

4.17. SIZE - Determine space required for file

The SIZE utility program examines the contents of a file and
calculates the number of sectors required to hold the text found
in the file. SIZE works on text files, relocatable files, and
executable programs produced by LINK. SIZE is invoked by the
command :

SIZE (file name)
where <(file name)> 1is the name of the file whose size 1s to be
calculated. Note the distinction between the file size printed by
SIZE and the size printed by DIRECT: DIRECT prints the number of

sectors allocated to the file, while SIZE prints the number of
sectors actually used by the contents of the file.

76



Marinchip 8800 Disc Executive User Guide
4.18. TCOPY - Text file copy utility

The Text Copy Utility is a very simple utility program provided by
Marinchip Systems for the 93800 computer system. Its usefulness
transcends its simple function of moving a text file from one
location to another because of the generality of the file system
that underlies the program. Since all peripheral devices are
treated as files by the Marinchip operating systems, the Text Copy
Utility can be used for functions as diverse as the following:

Copying a disc file from one disc to another.
Concatenating several files into one large file.
Listing a disc file on the console.

Making a hard copy of a listing stored on disc.

...and of course all the obvious permutations and combinations
that the above immediately suggest.

4.18.1. Using TCOPY

The Text Copy Utility is invoked simply by typing the name of the
file that contains it to the operating system when the operating
system prompt appears. The utility is stored in the file TCOPY on
a standard Marinchip system disc. Following the name of the
Utility program, the destination file is specified, followed by an
equal sign, and one or more source file names separated by commas:

TCOPY (ofile)=(1ifile),(ifile),...

The <(ofile)> and (ifile) specifications may be fully general file
hames, as described in the manual for the operating system being
used, and may be either device files or disc files.

The action of the command will be to copy the input files into the
output file, from left to right as specified on the command. The
result will be an output file consisting of all the lines in the

input files concatenated. Of course, if only one input file is

specified, the output file will be an identical copy of the input
file.

4.18.1.1. Examples of use

To list the contents of the file MYPROG on the console:
TCOPY CONS.DEV=MYPROG

b



Marinchip 9800 Disc Executive User Guide
To concatenate the files PROG1, SUB1, and SUB2 into the file
BIGGIE:
TCOPY BIGGIE=PROG1,SUB1,SUB2
To send the file USRDOC to the printer:
TCOPY PRINT.DEV=USRDOC
To read a paper tape into the file STUFF:

TCOPY STUFF=PTR.DEV
4.18.1.2. Error messages
The following are a list of error messages that may be generated
by the Text Copy Utility and their causes:
Error: Specify (ofile)=(1ifile),(ifile),(ifile),...
This message appears whenever a syntax error is detected in the
specifications. Probably one of the file names is badly formed,
or a delimiter between file names is incorrect.
Error reading file (ifile).
An I/0 error was encountered reading from the named input file.
The output file is closed, and any files following the named files
are ignored.
Error writing output file.

An I/0 error was encountered writing the output file. The Utility
immediately terminates.

File (file) does not exist.'
The named file could not be opened. If this is the output file,

the command is totally ignored. If an input file, the output file

is closed, and any input files following the named file are
ignored.

78



Marinchip 8800 Disc Executive User Guide
4.18. WORD - Word processor

The Marinchip Word Processor (WORD) is a powerful yet easy to use
text formatting language. It contains a set of basic commands
sufficient for most text formatting applications, and provides a
comprehensive string and macro facility so that the basic language
may be extended by the user for more complex formatting tasks.
Facilities built into WORD include:

. Right justification, centering

3 Automatic reformatting for different output devices
5 Multiple column output

. Automatic assignment of page and section numbers

. Automatic generation of Table of Contents

4.18.1. Using WORD
The input file for WORD is prepared using the Text Editor, then
WORD is called to format the text:
WORD (output file)=(input file)
where <(input file) is the file containg the text to be formatted,

and (output file) is the disc or device file where the formatted
text will be placed.

4.18.2. For more information

Refer to the manual "Marinchip 9900 Word Processor User Guide" for
information on how to prepare text for WORD, and further
information on how WORD is used.

79

|



Marinchip 9900 Disc Executive User Guide

5. System library subroutines

The system disc supplied by Marinchip Systems contains a number of
relocatable subroutines intended for use in user programs. These
routines are described by the sections below. The sections are
listed by the name of the file containing the subroutine on the
system disc. The entry points and calling sequence f£for each
routine are discussed in the description of the file.

80



Marinchip 9500 Disc Executlive User Guide

5.1. TEXTIN.REL - Read text input file

Entry points: TEXTIO, TEXTIN
This routine is a general subroutine which reads system standard
text files and returns individual lines to the calling program.

All communication with the subroutine 1is through a packet with-the
following format:

-------------------------------------------------------
.
-------------------------------------------------------
°
-------------------------------------------------------
; -
------------------------------------------------------
-------------------------------------------------------
-------------------------------------------------------
.
-------------------------------------------------------
- -
-------------------------------------------------------
-
-------------------------------------------------------
. -
-------------------------------------------------------

-
-------------------------------------------------------

The packet must be initialised with the READS function code, the
{file index) of the file to be read, the address of an I/0 buffer
to be used to read the file (I/0 buffer address), and its length
{I/0C buffer length). The 1longer the I/0 buffer, the more
efficient the access to the file will be. If the program is to
run under the Disc Executive, the I/0 buffer must be a multiple of
128 bytes. There are no restrictions under the Network Operating
System. Once the above fields have been set up, the text input
routine is initialised by the call:

LT R1 ,{packet)>
BL TEXTIO
{return>

where <(packet) 13 the address of the above packet and {returnh) is
the return point following the call.

To read a line from the file, store the address of the buffer

81



Marinchip 8800 Disc Executive User Guide

where the 1line is to be read into (line buffer address), and set
the length of the line buffer into (line buffer length), then use
the call:

LI R1 ,{ packet)
BL TEXTIN

DATA {I/0 error>
DATA {end of file)
{return>

If an I/0 error or end of file is encountered, TEXTIN will jump to
the respective address specified following the call. If the 1line
1s read normally, c¢ontrol will return following the two DATA
words. The ((length returned to user)> field will be filled with
the length of the line stored in the user buffer. This value may
be shorter than the user buffer, but will never be longer. The
line stored in the buffer consists of just the text; the trailing
carriage return is not stored. The ((total line length)) field is
filled with the total 1length of the line just read, and will
differ from the ¢ (length returned to user)) only when the line was
truncated to fit into the user buffer.

The TEXTIN routine 1is automatically closed out when the end of
file is encountered. No special close call is required.

TEXTIN is completely reentrant, and may be used to read any number
of text files concurrently (using one packet for each file, of
course).

The fields in the packet labeled with an asterisk (X) are used by
the TEXTIN routine for its own 1local storage. They must be
provided in the packet, but need not be initialised nor examined
by the user.

82



Marinchip 8900 Disc Executive User Guide
5.2. TEXTOUT.REL - Write text output file

Entry points: TEXTOO, TEXTOUT, TEXTOC

The TEXTOUT subroutine creates a system standard text file from
lines generated by the calling program. All communication between
the caller and TEXTOUT is through a packet with the following
format:

-------------------------------------------------------
-
-------------------------------------------------------
-------------------------------------------------------
.
-------------------------------------------------------
-
-------------------------------------------------------
) -
-------------------------------------------------------
. -
-------------------------------------------------------
-
-------------------------------------------------------

.
-------------------------------------------------------

In order to use TEXTOUT to generate a text file, the user must set
up the packet with the WRITES function code, the (file index) of
the file to be written, and the address (I/0 buffer address) and
length (I/0 buffer length)> of the buffer to be used to hold data
to be sent to the file. For programs which are to run under the
Disc Executive, the I/0 buffer must be a multiple of 128 bytes.
The Network Operating System imposes no restriction on the length
of the buffer, although under both systems the efficiency
increases as the buffer is made larger. Once the packet has been
initialised with the above values, the following call is made to
open the text output routine:

LI R1,{packet’>
BL TEXTOO
{return»>

where <(packet)> 1is the address of the packet, and (return) is the
return point to the calling program. To write an output 1line to
the file, the starting address of the line should be stored into
{line huffer address) and the length of the line stored into (line
buffer length), then the following call made:

83



Marinchip 9900 Disc Executive User Guide

LI R1 ,{ packet)
BL TEXTOUT
DATA (I/0 error>
{return>

The data word following call specifies the address where TEXTOUT
will Jjump 1if an I/0 error occurs while writing the file. If the
output is completed normally, TEXTOUT will return following that
data word.

When all lines have been written to the file, text output must be
closed with the call:

LI R1,(packet>
BL TEXTOC
DATA (I/0 error>
{return)

This call 1is essential, as it places the end of file mark at the
end of the text file, and causes the last block of data to be
written to the file.

The TEXTOUT routine is fully reentrant and may be used to write
concurrently to as many files as desired (of course, one packet is
used for each file).

The fields in the packet labeled with an asterisk (%) are used by

TEXTOUT for local storage. They must be provided in the pracket,
but need not be initialised or examined by the user.

84



Marinchip 8800 Disc Executive User Guide
5.3. TRACE.REL - Instruction trace

Entry points: TONS, TOFFS

The instruction trace package in TRACE.REL is a powerful tool f£for
debugging assembly language programs. The trace 1s activated by
the call:

BLWP TONS

Following the call, each instruction executed will be printed in
assembly language format on the user terminal. Register and
memory operands referenced or changed by the instruction will be
edited. Conditional jump instructions will be flagged with an
asterisk (%) 1if they actually jumped. System calls (JSYS) will be
printed as if they were a single instruction (that is, the trace
package will not attempt to trace into the system). The trace
package will not trace itself.

The trace may be turned off by executing the call:
BLWP TOFFS

Following return from this call, the machine will be '"native
mode", and will execute instructions normally.

Neither TONS nor TOFFS change the contents of any workspace
registers or the condition code, so they may be inserted anywhere
in a program.

The trace package executes instructions interpretively, so it 1is
capable of tracing code in ROM as well as in read/write memory.
Obviously, when a program is executed under the trace it executes
tens of thousands of times slower than when being executed
directly by the machine, so code which has to meet external timing
constraints may not be able to be debugged using the trace. For
most code, though, the trace should immediately show where a
program is going wrong.

85



