)

8

|

]

Marinchip 9900 Assembler
{7 User Guide

] by John Walker

(C) Copyright 1978 Marinchip Systems
fw All Rights Reserved

Revised July 1978

} . . 16 St. Jude Road
Mari nc‘hlp Sgstems Mill Valley, CA 9441 “Ta @15) 3831545

]

g

Us

SIS
nInznIpINg

CERISTS

e g

[N IR e e e e e 1)

PAROUOHENAPAEGAGTTAGUS BRPBREERERBLERAEEBEEED VWLOULEE LWL

Intr
1.1

(]

Rbe it it it s b b bt e = J O N O TS LIRS 00

3

PIRI DI AGATE FI i o=t b b e it it b b s e (R

in

—_

)

<.

e

T OVDNCUPUNRO

Marinchip 9900 Assembler User Guide
Table of contents

oduction
Conventions

q the assembler
Cdllin? the azcembler
Aszembly listing format
Error flags
Lecation counter
Ob ject cade
Line number
Source code

assembly language
Source langquage syntax

lLabuele
Mumbers
Straingds

ttroressions)
Helocatability
Mumeric operators
~ddress operators
Predefined symbols
Programmer—defined symbols
Comment.s :
Object code linkin
External symbol aeFinition
External symbol reference
Conditional assembly

B b b B
Rl SLit i

Ry~

mbly directives
AURG - Absolute origin
BES — Block ending with symbol
BSS - Block starting with symbol
BYTE - Byte generation

COPY - Ccpy source file
DATA — LCefine 16 bit data
DORE = Dummy origin

ELSE - Conditional assembly alternative
END = End of program

ENDF - End conditional assembly

EQU - Define assembly—time variable
EVEN - Force word alignment

IDT - Identify qrogram

IF - Conditional assembly

LIST - Enable assembly listing

PAGE — Eject page in assembly listing
RORG - Felocatable origin

TEXT - Generate character data

TITLL — Title for assembl

Ul — Turn off assembly ?isting

ruction descriptions))
Two general address instructions

A Add words
AR Add butes

Subtract words
Subtract bytes
Compare words
Compare bytes
Move word

(@]
L T T T T N |

_———GRNOG SRS
c
c

Move Move byte
. sue Set ones corresponding
0. S0OC - Set ones corresponding byte
1. SLC - Set zeroes corresponding
2. SZCB - Set 2eroes corresponding byte
Une general address instructions
L ¢ = 3ranch
2 .. — Branch and link
3 BLWP - Branch and load workspzce pointer
q CLLR - Clear
D SETO — Set to all ones -
) iV - invert

NN

O e S N O Y o S e N e e o e e e ot o e e e Y
VADNNNNOGCRCNCUDDDUWWW NPIMNIMPIPIMN - === O

L T T T T N T T O T T T T T Y O

10

Marinchi

T -

CRU single Dnt
430

SSGOoOC
S

-
~

1
&

" CRU mult1ple b

Sisd
X}
£om—

o
T

‘;eudo-lnrrruct1nns
FLOP — Floating o
JESYS - Jump to sy

RT = Return

STKR - Define s
I TK - Initiali
PSOHR — Push val
RPOFR - Pap wvaloe

el YR N
CAGAG AL

-ibi.J?J_—-

T~
-

p 9900 Assembler User Guide

Table of contents

Extended operation instruction
XoP - Extended operation
Communication register unit (CRU) instructions

instructions
Cet bit to one

2B - 22t bhit to zero
TR Test bit \

it instructions

L.DCR Load communication register
STCR ~ Store communication register

- S5.2. 7. NMEG — Negate
} 5.2. 3. ARs ~ Absolute value
: 5. 2. 9. SLPB -~ Swap bytes .
S5.2.10 INC - Increment
. 9.2 11 IMCT - Increment by two
1 5 2. 12, pEg - Decrement
& 9.2.13 DEC - Decrement by two
S 2. 14 X - Execute remote
S 3. - Reg::ter / general address instructions
= 9.3 1. GcC - Compare ones correspondin
,' 5. 3. 2. Cic - Fomqare zeroes corresponding
. 9. 3. 3. XOR - Exclusive or
5. 3. 4. MPY - Multiply
. 5.3 5. DIV - Divide
S. 4. Shift 1n;truct1on
| o401 SLA Shift le+t arithmetic
' 5,402 SRA - Shift right arithmetic
5.4 3. ERIN - Shift right civcular
- o499 SR = Shi1¢t right logical
'\} A mmadiatas operand instructiens
| 5.9, L. WMgrhspace Teglster immediate inctructions
2.3 1. 1. Al - Add immediate
e R DT — And immediaste
. S22 Cl - Cumpare immediate
| 5.9.1. 4. LI ‘- Lead immediate
- 2.5, 1.9, ont = Or immediate -
5. 9. 2. Internal register immediate instructions
. - 5.9, 2. 1. LIiMi ~— Load interrupt mask immediste
! 9.95. 2. 2. LWPI - Load workspace pointer immediate
* 9. 6. Jump instructions
o 5.6, 1. JHIP = Jump unconditional
3.8, 2. JEQ - Jump equal
[~ 2. 56. 3. JIHE = Jump not equal
;J 5. 6. 4. JET - Jump greater than
- 9. 6. 5. JLT = Jump less than
2. 6.6, JH - dump high
- 5 b 7. SHIE = Jump higqh or equal
; 5.6.8. JL = Jump low
| 3.6.9. JLE = Jump low or equal
- 9. 6. 10. JOC = Jump on carry
S5.6.11 JNC - Jump no carr
- 5.6. 12 Jil0 = Jump no overflow
;} 5. 5. 13, JQP - Jump odd parity
L 5. 7. Internal register store instructions
5.7. 1. STST — Store status
B 5.7.2. STWP ~ Store workspace p01nter
f 2.3, Contrel incstructicns
I 5 8. L. IDI_E - Idle procecsor
- 9. 8. 2 LPFX — Load and restart execution
5. 3. 3. SET — Reset
3. 8. 4. CHON = Clock on
5. 8. 5. CKOF — Clock o#f
5. 9.
5.9
9.1
5.1
5.1
51
5.1
9.
9 i
51

perotion
stem

NCGP - No cperation

qfdck psceudo instructians

tack pointer

ce stack pointer
ve on stack

e ¢#rom stack

ii

| [I Y
JMIRINININI NI NI AI PI NI NI N e =t 1t i 1t

|
n
W

{

|
) J N
SIS DISIRE s o Jol e e B ¥ e Ba It}

|

|
nny
>0

_"')4

USUSUNL
JPINRI NN,
quidbdp

.

UL
IR
uu

|
n
3]

-26

| |
LS 1 |88
N O

U
nn
NN

-27

|11
IR IAL(N]
oo

|
N
©

-8

U
nn
0w

|
nJ

|
nr
0G0

-29

UL
Cwuww
(o]ele]e]

USUSUSLSL
wwLww
bt b e b

Marinchip 9900 Assembler User Guide

Table of contents

2.9 POPJ - Jump to stack top
. 5. 6. Example of stack use

achine refzrence information
1. Inetruction summary

<. Stalbus register bits
. 3. Seneral address types

NN oo

Sample assembly language pragram

iii

-39
-35

-36
-36
-37
~37

]

Marinchip 9900 Assembler User Guide

1. Introduction

The Marinchip 9900 Assembler is a relocatable assembler for the Marinchip

9900 computer. It runs on the 9900 computer, accepts source files in a
format essentially compatible with the Texas Instruments assembler, and
outputs relocatable code completely <compatible with T.I. format. The
asczembler optionally produces an assembly listing, which maT be sent to a
file or to a printer or console. Lines containing errors will be printed
on the user console.

The assembler allows "address expressions"”, which permit a symbol to be
equated to a Fulla general 9900 address. Such a symbol can be wused on
instruction fields, and permits the 1later redefinition of storage use
simply by changing the value the symbol was equated to. For example,

static storage may easily be changed to storage based on an index register
in this manner.

The assembler allows conditional assembly of code depending on
assemnmbly—time variables. This allouws programs to be easily configured Ffor
various code options at ascembly time. onditional code sequences are

written with a simple IF - ELSE - ENDF construction, and may be nested to
arbitrary depth.

The assembler runs under any Marinchip operating system, and wuses the
operating system for all its I/0. In addition, since the operating system
performs all memory allocatiom the assembler automatically wuses all
configured memory without modification. : '

1.1, Conventions

In this manual, items which are elements of the lan?uage are written in
UPPER CASE TYPE. All examples of assembly programs will be in upper case.
The assembler itself is insensitive to the case of text, so the programmer
need not follow this convention. Items supplied by the programmer will be
indicated by <corner brackets>, with text inside the brackets describing
the item to be coded. Optional items will ©be enclosed in [square
bracketsl]. The description of the item will make clear what action is
taken when specifications are omitted.

= Using the assembler

2. 1. Calling the assembler

The assembler 1is invoked from operating system command mode by a command
of the form:

ASM <relocr=<source>[,<{listing>]

where <reloc> is the name of the file where the relocatable output of the
assembly 1is to be written, <source> is the name of the assembly language
proaram to be assembled, and the optional <listing> is the file where the
assembly listing (described below) is written. If the <Klisting>
specification and the comma that precedes it are omitted, the assembler
will make no listing, but will print lines on which errors are detected.

For example, to assemble the file MYFILE, place the relocatable object
code in file MYOBJ, and send the listing to the file LISTNG, one would
use:

ASM MYOBJY=MYFILE, LISTNG
To produce no listing, one would use:

ASH MYOBJU=MYFILE

The files wused with the assembler may be either device files or disc
files. The listing file, in particular, is frequently sent to the console

2

Marinchip 9900 Assembler User Guide
or a8 line printer by specifying the name of that device file.
2. 2. Assembly listing format

The assembler optionally generates a listin% which includes the source
code being assembled and a hexadecimal representation of the object code
generated. The format of the listing is explained below.

2.2. 1. Error flags

If any errors have been detected on this line of the assemblg. one OoT more
single—character error flags will be printed which indicate the nature of
the error. In some rare cases, the error flag may refer to an error on
the line preceding the line on which the flag was printed. The meanings
of the flags are as follows:

D Duplicate. The item in the label field is being redefined. This
normally indicates a duplicate label in the program.

E Expression error. This error indicates an improper expression,
or a general syntax error on an instruction or directive.

I Instruction error. The item in the operation field was not a
known instruction or directive.

L Level overflow. An expression was too complicated. It should be
rewritten without so many nested parentheses.

R Relocation error. This generally results from wuse of a
relocatable value when a nonrelocatable value is required, or
from an improper mix of relocatable and nonrelocatable values in
an expression.

T Truncation. A value was too large for the field in which it had
to be placed. For example, using a value greater than 15 when a
register number is required will cause this error.

v Undefined. This is not _an error, but simpls flags a reference to
an external symbol. It is 1issued simply to make external
references easier to spot when reading code.

v Value error. A string " or numeric value is too big or badly
formed.

% Internal error. This error indicates an internal _assembler
error. Please submit the source program to Marinchip Systems so
that the error may be corrected. LEASE ALSO SUBMIT ANY FILES
INCLUDED BY COPY STATEMENTS IN THE PROGRAM WHICH CAUSED THE
ERROR. -,

The occurrence of any error flag (other than the "U" flag) on a line wil

cause that line to be printed on the system console, even if_ the listin

has not ©been requested or is being sent to another file. If the listin
is being sent to another file, the error line will be printed both in th
listing file and on the system console.

2. 2. 2. Location counter

If this 1line generates code, the value of the location counter at the
start of the line will be printed. The location counter will be edited as
four hexadecimal digits. :

2. 2. 3. Object code

If code 1is generated by the 1line, it will be printed in hexadecimal

*ormat. Words will be separated by spaces, and a maximum of three words
of code (&6 bytes) will be printed on a line. I# a line generates more
3

i

I

e ——

Marinchip 9900 Assembler User Guide

than three words of code;, the code will be continued onto as man TD
additional 1lines as_ are required. If a line generates an odd number o
bytes, only the actual number of bytes generated will be printed.

2. 2. 4. Line number

The line number of each line in the source program will be printed,
followed by a period. If the line peing listed is from a COPY file (where
listing was specified on the COPY directive), the line number printed will
be the line number of the CCPY statement in the original program. In this
case, the line number will be followed by an asterisk (#) to identify the
code as having come from a COPY file.

e 2. 9. Source code
The input source line will be listed eiactly as read by the assembler.

3. The assembly language

The source language accepted by the assembler consists of two major types

of statements: “assembler directives and machine instructions. ssembler
directives are statements that control the assembler iteslf, and also
perform such functions as generation of constant numeric data. Machine

instructions are mnemonics for the hardware instructions of the M%?200 CPU
itself, and are translated into the appropriate binary <codes by the
assembler and placed in the output file.

3. 1. Source language syntax
Input to the assembler is written in three major fields, the LABEL field,
the OPERATION field. and the OPERAND field. Any information following the
operand Field 1is ignored, and may be used for comments. All input is
totally free format: information need not be aligned into specific
columns. In order to make programs more readable, it is recommended that
the operation, operand, and comment fields be aligned. The standard
columns used in all Marinchip software are:

Field Column

Label 1

Operation 11

Operand 21

Comment 41 _
If a line has a label, it must start in column one. If column one of af.
line 1is blank, it 1is considered to be an unlabeled line, and the first

word on the line is interpreted as an operation.

3.1.1. Labels

All labels defined by the programmer must start with an alphabetic ASCII
character, and consist only of alphabetic and numeric characters, or the
special character dollar sign ($). Erxamples of proper labels are:

RUNKA BLEEP1 C%$53F1% A$BOOGIE
Examples oFfF improper labels are:
6GOBBLE $ZAP 23SKIDOO
Labels may be up to BO characters 1in 1length, and all characters are
significant. he case of alphabetic characters is ignored in comparing
labels, so the two labels: -

TESTING and testing

4

)

P [
_— _

i
(b

Marinchip 9900 Assembler User Guide
are considered identical by the assembler.

3.1.2. Numbers

Numbers accepted by the assembler may be either decimal or hexadecimal.
Any number that starts with a leading 1zzero 1is considered to be
hexadecimal, and the characters "A" through "F" are accepted as part of
it. Numbers must be less than 65535 decimal, or OFFFF hexadecimal. A
sign m B enerate its two’s comglement negative
Tepresentation. The sign is not actually part of the number, as a signed
number is considered an expression and evaluated as any other expression:
see the section "Expressions" below.

3 1. 3. Strings

A string 1is an arbitrary group of characters enclosed in _quote marks.
Either single quotes (‘) or double quotes (") may be used. Strings must
ke 1less than 80 characters in length. - Two consecutive quotes will cause
the second quote to be inserted in the string as a normal character.

Hence the string:
‘It Just ain‘’t fair. ’
will be interpreted by the assembler as the characters:
v It yust ain’t Fair.
Strings are used ‘in various contexts by the assembler. A one or two

character string may be used wherever a number appears, and has the valvue
of a one or two byte ASCII representation of the quoted characters.

3. 1. 4. Expressions

The element on which the assembler operates 1is the expression. An
exprescion is composed of numbers, labels, and operators which act on the
operands <(numbers, labels, and other expressions). An expression may be

as simple as a single number, or as complex as imaginable.

Expressions are divided into two major categories: numeric expressions and
address expressions. A numeric expression is composed onluy of
nonrelocatable valves and numeric operators, while an address expression
m3y contain values with relocation attached, and may be composed through
the use of addressing operators. These terms and the distinctions
involved should become more clear as the following sections are read.

3.1.4.1. Relocatability

The assembler is capable of generating either relocatable or absolute code
for output. Absclute code is able to be loaded for execution only at the
address for which it was assembled, but relocatable code is able to be
processed For loading at any address by the Linker. In order to allow
this, the assembler must, in relocatable code. distinguish between
absolute binary values which are not associated with program addresses and
hence are invariant, and values which represent program locations and
which must be adjusted to reflect the actual address at which the program
is loaded. A pure numeric value 1is referred to as a nonrelocatable
%uantit%, and a program address is referred to as a relocatable quantity.
n a ypical program, numbers and labels set equal to numbers would be
nonrelocatable, while all program labels would be relocatable. To further
complicate things, the assembler can also generate absolute code: when in
this mode program labels are also absolute.

Becauvse the complete value of @ relocatable quantity 1is not knowh at
assembly time, restrictions are imposed on the operations in which a
Telocatable quantity may participate. ‘It is legal to: -

1. Add a constant te a relocatable quantity.

5

ay

il

s T
[e

AR h

Marinchip 9900 Assembler User Guide

Subtract a constant Frem a relocatable quéntit

2. . ' :
3. Subtgagt two relocatable quantities qie?ding an absolute
vantaity.
4. aompare two relocatable quantities with any of the relational
aoperators. - o :
All other operations will cause an "R" #flag (Relocation error) if

performed with relocatable quantities.
3.1.4 2 Numetric operators

The numeric operators are as follouws:

) Expression brackets
- = Unary Plus, Minus, DMNOT
Dl Tl Shift left, Shift right
) Logical AND

++ -— Logical OR, XOR

o/ Multiply, Divide

+ - Add, Subtract

= T Equal, Greater, Less

Tha op2ratore are executed in the order given above. For example, in the
expression:)

A+GHS
B and C will be multiplied, and the Toduct added to A. This occurs
because the "#" operator hes a igher priority than the "+" operator
(according to the above table), and hence is executed first. Operators
listed 1in the same line above will be evaluated left to right. Since the
parentheses are first in the table, subexpressions within parentheses will
always be evaluvated first. For example:

(A+D) KC
will cauvuse A and B to be added, and the sum multiplied by C.
The normal arithmetic operators (+, -, %, and /) operate on 16 bit signed
numbers. The division operator (/) discards the remainder +from the
division. The unary minus operator takes the two’s complement negative of
its operand (e.g.., —-A).
The logical operators (++, —-——, and *#) perform bit-bg-bit logical
operations on their 16 bit operands. The functions performed are OR, XOR.
and AND respectively. If the "—--=" operator is used as a wunary operator

(e.a.., -—-F), the one’s complement negative (inversion of all bits) of the
operand will be the result.

The shift operators (£,) logicallg'shiFt their left operand 1left or
i

right, Trespectively, the number of ts in the right operand, modulo 16.
For example:

142 is 4
16>>3 is &
The relational aoperators =, » and <) return 1 if the relation between

the two operands is true and zero otherwise. Note that the relational

operators c¢an be used with the logical operators to form complex logical
eApressions, :

a2 1. 4.3 Address operators

The address operators are used to build an address value from one or more

operands. The form of the address operators are as follows:
woreq Indirect through <reg>
*ireg+ i Indirect through <reg>, increment
“val:{<reg) Index <wvalX by <regx>
@<valls Direct address <val>

[—

S G

Marinchip 99200 Assembler User Guide

which must be

The first construction, #<reg@>, causes the expression <reg>,
0 be treated as a

nonrtrelocatable and have a value between O and 15, ¢
register which contains the address of an operand.

The secaond construction, #Ireq>+, 1is identical to the first, except that
following the reference to the register for the address of the operand it
will be incremented by the length of the operand (1 if wused in a byte
instruction, 2 if used in a word instruction).

The third construction, <val>(<reg>), is used to address an operand whose
address is the location <val> with the contents of register <reg> added to
it. “val> may be any value, relocatable or not, but <reg> must be
nontelocatable and between O and

The fourth construction, @<vall, simp1¥ indicates that <val> is to be used
as the address of the operand. his is seldom necessary because the
assembler automatically generates a direct address for any rTelocatable
operand or absolute oaperand greater than 15. It is always permissible,
thouagh, and required to dircctly address an absolute address between O and

13

L2 addross aperators may be wused in any instruction where a 'general
adaress” operand is required, and identify the addressin% mode to be wused
h

with the operand. IF none of these operators apoear, e mode generated
4iill be the contants of the mregister 1f the operand 1is absolute and
between O and 1%, and direct otherwise. The address operators may also be

used with the EQU directive to eguate a simple name to a complex address
gxpression. fThis can be wuse to simplify coding and to make programs
eacier to modify.

3.1. 4 4. Predefined symbols

At the start of an assembly, the names for ¢the
avtomatically defined by the assembler. The
equated to O through 15.

3.1.4. 5. Programmer—defined symbols

Normallg, the appearance of a label in column 1 of a line will cause the
label o be equated to the current location counter. fThis is the
mechanism by which labels are given to program and data addresses. The
EQU (equate) directive allows the grogrammer to define a label equal to
any numeric or address expression. The directive:

<“label> EQU <expression:

will set <label> egual to the <expression>. = Henceforth in the assemblg.
the appearance o the <label> will be equivalent to the value of the

~exprecsionl at the time the EQU statement was evaluated. Examples of the
EQU directive are: ’

TPORT EQu 020

ALTENT EQU ENTRY+4

STKTOP EQU STACK(R1)

3.1.5. Comments

Comments may be placed following the last +field evaluated by an
instruction or directive. The las field is terminasted by a space
following the last item,. and after that space any sequence of characters
may be included as a comment. The assembler will alwags treat the
sequence ‘"period space" (". ") as the end of line, except when it appears
inside a quoted string. This convention permits comments to be included
on lines where a narameter is omittéd (for example, END or RORG), and also
allows lines which are all comment. Lines which are to be all comment
must have a period space as their first two nonblank characters. The

seriod space may begin in column 1, or some later column. Examples of
comments are as Follows: L

[-

AN N S S R T S S

L 44‘-\
—

Marinchip 9900 Assembler User Guide

oV RO, HEADER THIS IS A COMMENT
This line is all comment
RORG . RELOCATABLE CODE

MORE COMMENT
3. 2. Ob ject code linking

The assembler produces rtelocatable object code which is turned int
executable grogram by the Linker. The relocatable code allows progra

! : ”
. .
v@yguf

o an
ms to

define labels accessable to other programs, and to reference code and data
devined 1in other assemblies, then combined by the 1linker 1into an
executable program.
3.2 1. E«ternal symbol definition
To de¥ine 3 symbol as an external reference, an asterisk (%)} must follow
the apgearance ofF the symbol in the label field. For example, to
eyxternally de2#ine the entry point to a csubroutine, one might cade:
ZONK# MY R11, SAVEIT Save return point
The label ZONK will be externally defined, and may be referenced by other)
rograms when the Linker is used to produce an executable program. The .
Ltanhel ZOMK mau be refFerenced within the assembly Jjust like any other
non—-externally defined label. The format of relocatable code restricts
the significance of external symbols to &6 characters. As a Tesult, even
though within the assembly labels may be up to 80 characters long and are
significant to their full length, externally defined labels must be unique
in their First &6 characters.
3.2 2. External symbol reference
An ec«ternal symbol is referenced simply by using it invthe aséemblg. For
sxample, another program might call the subroutine ZONK defined above with
the ststement: :
BL ZONK Zonk the data
An external symbol -may appear wherever a 15 bit relocatable quantity may
be used. However, an expression such as:
ZONK+2
is not permitted. An external szmbol must be simply used as its defined
value (this 1is a restriction of the relocatable code format). Note that

since external suymbols ave unique only to the +first & characters,
following symbols:

BOGGLE BOGGLEKLUNK BOGGLEBARGLE

will all reference the <=same external symbol, "BOGGLE". Any line
references an external s?mbol will be flagged with a "U” in the
column of the assembly listing. This is not an error, only an indic
that this line references an external symbol.

J. 3. Conditional asusembly

The assembler allows cselection of the code to be assembled hased upon

value of assembly-—-time expressions. This is accomplished through v
the IF, ELSE, and EMOF directives (described in_more detail in
"Assembly directives"” chapter below). The IF directive take
expression as an operand. That expression is evaluated, and 1f no
the code fol;owlnﬁ the IF is assembled. If 2ero, the code between ¢t
and the matching END

F will be skipged by the "assembler. While ski
code, the assembler will scan for IF and ENDF lines, so that only the
that matches the IF that +turned off¢f the assembly will restore
genetation of code. This allows IF. - ENDF pairs to be nested t

8

theﬁa

which
first
ation

the
se of

the
s an
nzero
he IF
pPping
EnDF

the
o any

Marinchip 79900 Assembler User Guide

desired depth. The ELSE directive turns code off if encountered while

assemblin% code, and turns code back on if encountered while skipping code
at the outermost IF level. Note that since the IF directive turns code on

if 1its operand 1is nonzero and off otherwice, and the relational and
logical operators fellow the convention that 1 means TRUE and O means

FALSE, I directives ma% be coded using relational and lo?ical operators
git? their normal mathematical meaning. Examples of conditional assembly
oilow:
MAXMEM EQU) 04000 ~ Maximum memory size
SIGNON EQU 1 Print Sign-on if nonzero
IF SIGNON
JSYS PRSIGN Print sign—on message
ENDF
1F SIGNON
PRSIGN RYTE WRITES, O Packet to print signon
DATA 0, SIGNM, SIGNL, O
SIGNM TEAT "APL\9900 "
1F MAXMEMZ-02000
TEXT "(Large version)"
EL.SE -
TEXT "(Small version)"
EMNDF
BYTE 0D _ Carriage return
SIGNL EQU $—-SIGNM Length of message
EVEN
ENDF
4. Assembly directives

Assembly directives are statements in the assemblghlanguage that do not

correspond to machine instructions. Some of ese statements generate
data, others simply specify information used by the assembler. A <label>>
may be <cpecified on ang assembly directive. Normally, the <label> will
simply be set equal to the ~value of the 1location counter prior to
processing the directive. In cases where some other action is taken
regarding the <label> this will be noted in the description of the
dirtective. The directives are discussed in alphabetical order.

4. 1. AORG — Absolute origin

“labelZ AURG <{expressionx>

The location counter is cet to the value of <expression> and the assembler
begins generating absolute code. Absolute code is not relocated by the
Linker, 50 data generated following the AORG directive will be placed
starting at the address specified by <expressian> regardless of where the
program is loaded. If a <label> is specified, it will be set equal to the
new location counter Ffollowing the processing of the AORG directive.

4.2. BES - Block ending with symbol

<label> BES <expression>

The number of bytes indicated by <expression> will be reserved by addin?
the <expression> +to the location counter. The <label> will be set equa
to the first address following the reserved area. This directive is wused
for vre2serving .tables which are addressed in order of descending address.
For example, 1f the location counter were at 0200 and the directive:
"STACK BES - 040

were hrocgssed. tﬁe]label.STACK would be set equal to 0240.

Z

Marinchip %9900 Assembler User Guide

4.3 BSS - Block starting with symbol

<label DSS “expression

A block of storage with the length in bytes specified by <expression’ is
reserved by adding <expression’ to the location counter. If a <label> is
spacified, it is set to the address of the first byte of the block
"Teserved. This 1s the mnormal means by which blocks of memory are

reserved.

4. 4. BYTE - Byte generation

2label> BYTE <expressioni, Cexpressionz, .. .

Each <expression> cpecified is output in a single byte of _data. If the
wexpression’: isg relccatable or has a value greater than 255 a truncation
errcr will be flagged. Any number of bytes may be generated by specifying

multiple e«precsilons.

4. 5. COPY - Copu souvrce file

ilabél} cory “gtring., <expression

The <string> specifies the name of a file. That file is rtead and included
in the assembly. Text from the file is processed as if it came from the
file being assembled, except that it is not listed unless the <expression>
is specified and has a nonzero valve. The COPY directive is normally used

to 1include common definitions or frequently used pieces of code in
multiple assemblies without the need for physically including the code in
each assembly.

4. 6. DATA — Define 16 bit data

“<label> DATA {expressipn},{expression}:”.

The DATA directive generates one 16 bit word for each <expression>
specified. The <expressions’ may be either relocatable or nonrelocatable.

4. 7. DOREC ~ Dummy origin

<labelx DORG <expression:

The DORG directive sets the location counter to the absolute valueéa

cpecified by <expressioni, places the assembler in absolute mode, and

turns off the actual generation of code. DORG is most often wused when
defining data structures. A "DORG O" directive can be used to turn on
dummy assembly and set the location counter to zero. The components of a

data structure can then be rTeserved by BSS directives, and then normal

- assembly can be resumed with an AORG or RURG directive. This allows wuse

of the assembler %o allocate storage within a date structure without
pxplicit definittion by the programmer. I+ a < label> 1s specified, 1t will
te set equal to the new ocation counter value, in other words:. to
Caxprecsion.

4.3, ELSE - Conditional aszembly alternative
<-labell EI.SE

When the ELSE directive is encountered, and the IF nesting 1level is one
findicating that the outermost IF is in effect), if code was turned ofF by

Ehe IF it 1s turned back on. {F the cede was turned on by the 1F, the
ELSE turns it off. This allows aiternate code to be generated bu the
sequence: IF - ELSE - ENDF. .

10

Marinchip 9900 Assembler User Guide

4. 9. END - End of program

<labell END [{expressiaoni]

The EMD directive identifies the end of an assembly and must be the final
limne in -any +ile to be assembled. If no <expression> is specified as an
operand, the program will be generated with no starting address specified.
I+ an <<expression: 15 specified, a starting address will be generated,
making this a main program. The <expression> will normally simply be the

label on the line containing the first instruction to be executed in the
program.

4. 10. ENDF - End conditional assembly

Llabel EMDF

I encountered while skipping ccde because of an IF or ELSE directive, the
IIF nesting is decremented. If zervo, 1ndicatin§ that the ENDF matches the
iF or ELSE thzt turned off *the processing of code, the _assemblu resumes
with the next line. If nonzero, this ENDF matches an IF within a region
of code turned off by an_ outer IF, and the nesting level is simply
decremented. If *the EMNDF 1is encountered,durin% normal assembly, it is
simpiy ignared, since the block of code it terminates was turned on.

4. 11, tQU - Define assembly—time variable

“<label EQU <expression’

The “<label> is set equal to the value of the <expression> and may be wused
henceforth in the assembly to represent the value of the <expression>.
The <expression’> may be either a numeric or address expression, and may be
either relocatable or nonrelocatable (subsequent use of the label, of
course, may occur only in a context where the <expressionX itself would be
permissible). A “Zlabel» may be redefined at any time by an EQU statement.

3. 12. EVEM - Force word alignment
“label> EVEN

I# the 1location counter is odd, one byte will be rTeserved to force it to
be even. This directive is narmally used following a block of BYTE or

"TEXT data, or byte—aligned blocks reserved by BSS or BES, to insure that

the location counter is at a word boundary before generating instructions
27 data which require word alignment.

4. 13. 1DT - Identify program

~labelX IDT <string>

The program identification 1is set equal to the Cstring> specified. The
proqram jJdentification may be up to 8 characters in length, and is printed
by the Linker when a8 memery map is requested. I# no IDT statement is
supplied in the program, the value "NMO IDT !'" will be vused.

4.14. IF - Conditional assembly

“labell 1F Cexpressionz

The <exprcssioni», which must be a nonrelocatable 3uantitg, is evaluated
[# nonzero. the IF directive 1is ignored an the assembly continues
normally. [+ 2e2T0, the assembler skips all subsequent 1lines wuntil a
matching ELSE or ENDF_ directive is found. Nhilevskippin? code, the
assembler will zcan for IF and EMDF directives so that nested F = ENDF
.equences will be correctly processed. Lines skipped bu an IF directive

11

T)

oo OO O

.

Marinchip 9900 Assembler User Cuide“'

wiil be listed in the output listing (if one is being generated), but noé%B
code will be assembled for them. b

4.15. LIST - Enable assembly listing

wlava2ll LIST

I¥ the assembly listing has been suppressed by a preceding UNL directive,
it w1ll he resumed.

4. 16. PAGE - Eject page 1in assembly listing

<label: PAGE

ir an assembiu 1i1sting 1s beang enerated, a page _e)ect will occur
Following tha line containing the PAGE directive. This may be used to
cause separate pieces of a nrogram to be listed on ceparate pages.

417

RORG - Relocatable origin

“lavel RORG “<expression.y : j)

The RORG directive sets the assembler producing relocatable code, and sets
the relocatable location counter to the value of <«<expression>. If
Texpressions is omitted, the location counter will be set to the length of
all relocatable code previously generated in the program. This is useful
to return to relocatable ccde ageneration following an absolute block
(AORG) or dummy block (DORG). When an assembly starts, the assembler
asscmes a:

RORE 0
divective is in effect. I+ a <{labell> 1is spec
the wvalue of the laocation counter fol
irzctive.

ified, it will be set eaual
lowing processing of the RORG

Gcer

4 18. TEXT - GQenerate character data

<label> TEXT [-1<{string>

The TEXT directive generates bytes containing the ASCII character codes
for each character in a <string. If the <string> is preceded by a minus
siar, the two’s complement of the final cheracter will be gqenerated (to
serve as an end of string indication). Mote that TEXT generates only as~
many butes as there are characters in the strin%, and that as a result anw
odd number £ butes may be generated. If the data following the TEXT

)
directive must be aligned on word boundaries, an EVEN directive should
follow the TLXT line.

4. 19 TYTL - Title for assembly

Tlabell TITL <{stringl

The TITL directive specifies a title to be printed on 2ach page of the
assembly listing. The <strinql> will be printed at the head of each page

of the assembly listing until the end of the assembly or until superceded
by another TITL directive.

4. 20. UNL. = Turn off assembly listing

“label UNL.

The assembly listing will bhe suppressed. The 1listing may be later

12 “D

Marinchip 9900 Assembler User Guide
resumed,. if desired, by a LIST directive.
2. Instruction descriptions

The following sections describe the machine instructions of the M9900 CPU,
iving the sumbolic assembler suntax used to generate each instruction.
he 1instructions are grouped by aeneral type: each instruction within a

type shares a common syntax with all others of the same tuype.

Within the instruction descriptions, the Following nomenclature will be
used for items supplied by the programmer when coding an instruction:

<gas> General address of source

“qad General address of destination

wa Workspace register address

iaplr Immediate operand

{destinationi Program address

Leountr Bit count from O to 16

Cindexr XOP index Ffrom O to 195 _

In coding these rfields, any address expression may be used for a general
address (“gaz> or <gad:). A workspace register address must be a
nonrelocatable eipression between O and (5. An immediate operand may be a
relocatable or nonrelocatable value, but may not be an address expression.
& <destination> address 1is a value whose relocation must be the same as
the code currently being generated. A <count> must be nonrelocatable and

?etween O and 16, and an <index> must be nonrelocatable and between O and
)

9. 1. Two general address instructions

The two general address instructions take two eneral address operands.
The first is referred to as the ."source", and the second is referred to as
the ‘"“destination". The instruction normally operates wupon the two
cperands and stores its resuvlt, if any, into the destination.

5.1, 1. A - Add words

A <gas>, <gad>

The source operand word is added to the destination operand and the result
is stored into the destination operand. The result 1s compared against
zero and the condition bits are set accordingly. If there is a carry out
of the add, the carry bit is set, and if the result cannot be represented
as a 16 bit integer, the overflow flag is set.

Status bits affected: Logical greater than,-arithmetic greater than,
equal, carry, overflow.

Op code: AQO0QO

Format: 11010ttddddttssss
—————— Destination
—————= Source
5.1.2 A3 - Add bytes
A Lyass, {gad

The source byte operand is added to the destination byte operand and the
result is stored 1into the destination byte operand. When the source or
destination operand is a workspace register, the byte addressed will be
the upper byte in the register bits 15 - 8). The other byte in the
destination address will be unchanged. The result of the addition is
compared to 2ero and the status bits are set accordingly. If there is a
carry out of the bytes added:. the carry bit will be set, and if the result
cf the addition is not representable ags an 8 bit two’s complement integer,

13

{ T T T
() | i

T Ty Ty U

-

Marinchip 9900 Assembler User Guide

the overflow bit will be set. The parity status bit is set when the %@

number of bits in the result is odd, and is cleared otherwise.

Status bits affected: Logical greater than, arithmetic greater than,
equal, carry., overflow, parity. -

Op code: DROOO

Format: 10l1ttddddttssss
—————— Destination
—————— Source
5.1. 3. S - Subtract words
=] {gas};{géd}

The source operand is subtracted from the destination operand and the
result is stored in the destination operand. The result is compared with
zero and the status bits are set resulting from the operation. hen there

i3 a carry out of the most significant bit, the carry bit is set, and when
the difference cannot be represented as a 16 bit integer, the overflow bit
is sek.

Status bits affected; Logical greater than, arithmetic greater than,
equal, carry, overflow.

Op- cotde: 6000

Format: 0110ttddddttssss
—————— Destination
—————— Source
5.1. 4, 8D - Subtract bytes
)¢} “gass f.gad>

The <ource byte operand is subtracted from the destination b%te operand.
The rtesult is stored in the destination byte operand. he result is
compared with zero and the status bits are set accordingly. If there is a
carry out of the most significant bit of the byte, the carry bit will be
set, and if the difference cannot be represented as an 8 bit integer, the
overflow bit will be set. If there are an odd number of one bits in the
result byte, the parity status bit will be set, otherwise the odd parxtg
status bit will be cleared. If either the source or destination operan
is @ workspace register, the high byte (bits 15-8) will be wused as the
operand. The other byte in the word containing the destination operand
will not be changed by this instruction.

Status bits affected: Logical greater than, arithmetic greater than,
equal, carry, overflow, parity.

Op code: 7000

Format: Ol11lttddddttssss
------ Destination
—————— Source
S5.1. 5. C - Compare words
C Tgasl, Lgad>

The <source operand is compared to the destination ogerand and the status
bits are set as a result of the comparison. The arithmetic greater bit is
set if the source operand is greater than the destination when both are
considered as 16 bit two’s complement integers. The logical greater bit
is <cet if the source operand 1is greater than the_destination operand when

both are considered as 16 bit unsigned numbers. The equal ‘bit is set if
the two operands are bit-for-bit equal.

14

Lo

Marinchip 9900 Assembler User Guide

Statgs bits affected: Logical greater than, arithmetic greater than,
equal.
Op code: 2000
Format: 1000ttddddttssss
—————— Destination
—————— Source
5.1. 6. CB — Compare bytes
Cn {gas}.{gad}>
The source byte operand is compared to the destination byte operand. The

arithmetic greater than, logical greater than, and equal bits are set as
described above for the C instruction, except <that the operands are
considerad as B8 bit signed and unsigned quantities, Tespectively. In
additian, the garitg bit is set if the source operand contains an odd
number of one bits.

Status bits affected: Logical greater than, arithmetic greater than,
equal, parity.

Op code: 2000

Format: 1001ttddddttssss
——————— Destination
—————— Source
5.1.7. ~Mav - Move word
MOV <gas’>,<gad>
The source operand is moved to the destination. The rtesult 1is compared
~with zero and the status bits are set as a result of the comparison.
Statgs bits affected: Logical greater than, arithmetic greater than,
equal.
Op code: Cc000
Format: 1100ttddddttssss
—————— Destination
------ Source
S5.1.8. MOVE - love byte
NMOovB <gas>, <gad>
The source b%te operand is moved to the destination byte. The other bgte
in the destination 1is wunaffected. If the source or destination is a
workspace register, the upper byte (bits 15-8) will be addressed. The
byte moved is compared against zero and the condition bits are set as a
result of the comparison. If the byte moved contains an odd number of one

bits, the parity bit will be set, otherwise it will be cleared.

Status bits affected: Logical greater than, arithmetic greater than,
equal, parity.

Op code: DOOO)
Format: 1101ttddddttssss

______ Destination
—————— Source

Marinchip 9900 Assembler User Guide

5.1. 9. soC — Set ones corresponding

s0C gas’r, <{gad>
For each one bit in the source operand, the corresgonding bit in the
destination operand 1is set to one. Bits in the destination that
correspond to zero bits in the source will be unchanged. The result is
compared to zero and the status bits are set accordingly. This

instruction is equivslent ¢to a logical OR of ¢the source with the
destination.

Statgs bits affected: Logical greater than, arithmetic greater than,
equal.
Op code: E000
Format: 1110ttddddttssss
—————— Destination c
———— Source
S.1.10. S0CB - Set ones corresponding byte
306D Tyas>, .gad>

For each one bit in the bgte source operand, the corresponding bit in the
destination byte operan is set to one. Bits in the destination that
correspond to zero bits in the source will be unchanged, as will the other
byte in the destination word. If the source or destination operand are
workspace registers, the upper byte (bits 15-8) will be wused as the
operand. The result byte is compared to zero and the status bits are set
accordingly. If the result byte has an odd number of one bits, the parity
bit will be set, and cleared otherwise. This instruction is equivalent to
a3 logical OR of the source and destination bytes.

Status bits affected: Logical greater than, arithmetic greater than,
rqual, parity.

Cp code: FOOO

Format: 1111ttddddttssss
—————— Destination

—————— Source
5.1.11. SzC - Set 2eroes corresponding
512C < gas., Xgad.>
For each one bit in the source operand, the corresponding bit in the
destination operand is cleared to zero. Bits corresponding to bits in the
source operand will be unchanged. The Tresult of the operation will be
compared to zero and the status bits will be set accordingly. This

instruction 1is egquivalent ¢to an AND with the one’s complement of the
source operand. '

Status bits afFfected: Logical greater than, arithmetic greater than,
equal.
Op code: 4000
Format: 0100ttddddttssss -
—————— Destination
—————— Source
5.1. 12 SZICB -~ Set zeroes corresponding byte

S5ZCRB {gasy, Lgad>

For each one bit in the source byte operand, the corresponding bit in the

16 : g@ .

Marinchip 9900 Assembler User Guide

estination bute operand will be cleared to zero. Bits in the destination
hat correspond to zero bits in the source will be unchanged, as will be
he other byte in the destination word. The result byte will be compared
o zero and the status bits will be set according to the result of the
omparison. If the result byte contains an odd number of one bits, the
arity bit will be set, otherwise it will be cleared. If the source or
estination operands are uworkspace registers, the byte addressed will be

the upper byte (bits 15-8).

QAN ctctrctQ

Status bits affected: Logical greater than, arithmetic greater than,
equal, parity.

Op code: 5000

Format: 0101 ttddddttssss
—————— Destination
—————— Source
5. 2. One general address instructions
ihe one general address instructions contain a single general address
specivication. The source operand is obtained from this address and the
result, 1f any, is stored back at the same address. .
5.2. 1. B - Branch
3 <ga>
The program counter is set equal to the address to which the general
address evaluates. Execution will continue at that address.
Status bits affected: none.

COp code: 0440

-~ Faermat: 0000010001 ttdddd
S ittt Destination
5. 2. 2. DL. - Branch and link
BL <gax>
Workspace register 11 (R11) is set equal to the address following the BL
instruction, and the program counter is set equal to the address to which
the general address <ga- evaluvates. This-is the normal subroutine call
instruction.
Status bits affected: none. o
Op code: 06830
Format: 0000011010ttdddd
——————— Destination
5. 2. 3. BLWP - Branch and load workspace pointer
BLWP <ga
The workspace pointer is sét equal to the word at the address designated
by <qal, and the program counter is 1loaded with the contents of the
following word. Within the new workspace, register R13 is set equal to
the revious workspace pointer, R14 is set equal to the address Ffollowing
the BLWP instruction, and R15 is set equal to the status register. This

instruction enters a subroutine which operates with a different register
set. The loading of the calling context into the registers of the new
portspagg permits the subroutine to return simply by executing a RTWP
instruction. .

17

Marinchip 9700 Assembler User Guide

Status bits affected: none.
Op code: 0400

Format: 0000010000ttdddd ’
------ Destination

. 2.4 CLR - Clear

CLR <ga>
The word at address <ga> is cleared to zero.
Status bits affected: none.
Op code: 04CO
Format: 000001001t ttdddd

—————— ' Destination

.29 SIETO - Set to all ones

SETO Tgar
The word at address <ga> is set to all ones (OFFFF).
Status bits affected: none.)
Op code: 0700
Format: 0000011100ttdddd

—————— Destination

R § 1Y) - Invert

INY Tgakr
The word at address <ga> is one’s complemented. That is, all zero bits
are set to one and all one bits are set to zero. The result is compared
to zero and the status bits are set accordingly.
Status bits affected: Logical greater than, arithmetic greater than,
equal.

Op code: 0%40

Format: 0000010101ttdddd
—————— Destination
3.2 7. MEZG - Negate
MEG Qe
The word at address <ga> is negated (two’s complement negative). This is

accomplished by inverting all bits of the operand and then adding one.
The result of the negation is compared to zero and the status bits are set

accordingly. In two’s complement representation there 1is one more
negative number than there are positive numbers. The number -32768.,
hexadecimal 08000, has no positive counterpart. An attempt to negate this

number will set the overflow status bit

Status bits affected: Logical greater than, arithmetic greater than.
equal, carry, overflow.

Op code: 0%00
Format: 0000010100ttuddd

18

Marinchip 9900 Assembler User Guide

—————— Destination
5.2.8. ABS -~ Absolute value
ARS {ga
The absolute value of the operand at <ga> is taken and stored back at
<gal. he absolute value is taken bg examinin the sign bit of the
operand. If zero, the operand is left unchanged. If one, the operand is

two’s complemented. The original operand is comgared against zero and the
status bits are set agcord;nglg. I# the original operand is —-32768 (08000
hexadecimal), a negative number which has no positive counterpart, the
overflow status bit will be set. '

Status bits affected: Logical greater than, arithmetic greater than,
equal, carry, oaverflow.

Op code: 0740

Format: 0Q0000!11101ttdddd
—————— Destination
5.2. 9. SHWPB - Swap bytes
SWPB <{ga>

The most significant and least significant bytes of the operand at <ga>
are exchanged. The result is equivalent to shifting the source operand
circularly 8 bits.

Status bits affected: none.
Op code: 05€C0
Format: 0000011011ttdddd
------ Destination

5.2.10. INC — Increment

INC <ga> -
The value at <ga> is incremented by one. The result is compared to 1zero
and the status bits are set accordingly. If a carry out or overflow

occurs, the status bits will be set to reflect it.

Status bits affected: Logical greater than, arithmetic greater than,

equal, carruy, overflow. -
Op code: 0580
Format: 0000010110ttdddd
—————— Destination
5.2, 11. INCT -~ Increment by two
INCT <gax»

&

The value at <ga> is incremented by two. The result is compared to zero
and the status bits are set accordingly. If a carry out or overflow
occurs, the status bits will be set to reflect it

Status bits affected: Logical greater ¢than, arithmetic greater than,
equal, carry, overflouw.

Jp code: 0ueo
Format: 0000010111ttdddd

— [— E—— - (

| S

Marinchip 9900 Assembler User Guide

—————— Destination

5. 2. 12 DEC ~— Decrement

DEC Qi
The value at <{ga> is decremented by one. The result is compared ¢to zero
and the status bits are set accordingly. I# a carry out or overflow

occurs the status bits will be set to reflec it.

Status bits affected: Logical greater than, arithmetic greater than,
equal, carry, overflow.

Op code: 05600

Format: 0000011000ttdddd
e ———— Destination
5 2. 13. PECT ~ Decrement by two
NDECT Qa3 o] : -
The value at :gaZ 1s decremented by two. The result is compared to 1zero ')
and the status bits are set accordingly. If a carry out or overflow

occurs the status bits will be set to reflect it.

Status bits affected: Logical greater than, arithmetic greater than,
equal, carry, overflow.

Op code: 0640

Format: 0000011001ttdddd
—————— Destination
5 2,14 P - Execute remote
X <gax>

The word at <ga’* will be wused as the operation code of the current
instruction. In other words, the X instruction causes the instruction at
the specified address to be executed. The program counter is not changed,
however, so execution will continue in line following the X instruction
(assuming that the instruction executed does not itself change the program
counter). There are several wrinkles associated with this instruction.

First, if the instruction executed requires data words following it for
immediate data or direct addresses, these words will be loaded Followingﬁﬁ
the X instruction, not following the address executed. Second, if the
instruction executed is a relative jump instruction, the displacement will
be added to the address of the X instruction, not +the address of the
instruction; this 1is seldum what the programmer had in mind. Third, the
hardware instruction Fetch signal is not turned on when the operand of the
X instruction is fetched. This may confuse some user imglemented special
purpose hardware that <counts on this signal. Fourth, while the X
instruction itself «changes no status bits, the instruction executed will
cet the status bits as it normally would.

Status bits affected: none, however instruction executed will set status
hits normally.

Op code: 0480

Format: 0000010010ttdddd
—————— Destination

.
g
3

N

]

—

Marinchip 9900 Assembler User Guide
5. 3. Register / general address instructions

These instructions take their source operand from the general address
specified in the instruction, and use a workspace register specified in
the instruction as the destination operand.

5.3. 1. coc — Compare ones corresponding

coc <gas>, Cwa>
The contents of the workspace register <wa> are tested against the
contents of the general address <gas. If every bit which 1s a one in
.gas> is also a one in <wa>, the equal status bit is set. Otherwise (if
one or more bits in <gas® which are ones correspond to zero bits in <wa>)
the equal status bit is cleared. This instruction 1is most often wused

where the workspace register contains a set of bits indicating logical
values. and the general address operand is a word containing a single bit

~denotin%h on2 of those values. he COC instruction permits a simple test
he

tor whe v that bit is set in the workspace register. COC can, of
course, also be used to test multiple bits for being set.

Status bits affected: Equal.
Gp code: 2000

Format: 001000uwwwwttssss
———- - Workspace register
L m————— Source
5. 3. 2. czc — Compare zeroes corresponding
CzC <gas>, <wa>

The contents of the workspace register .<wa> are tested against the
" contents of the general address <gas’. If for ever position in <gas>>

which is a one bit, the corresponding bit in <wa> is a zero, the equal

status bit is set. QOtherwise (one or more bits which are ones in <$as>

correspond to 2ero bits in <wa>), the equal status bit is cleared. his

instruction can be used similarly to COC to test whether a single bit 1is
off, and 1is particularly useful to test whether a field of bits are all
zero.)

Status bits affected: Equal.
Op code: 2400

Format: 00100iwwwwttssss _]
- Workspace register- -
------ Source
5. 3. 3. XOR - Exclusive or
XOR <gas>, <wa>

The contents of the general address operand <{gas> and the workspace
register <wa* are bit-by-bit exclusive ored, and the result is stored in
the workspace register <waZz. The result is compared against zero and the
status bits are set accordingly

Statgs bits affected: Logical greater than, arithmetic greater than,
equal.
Op code: 2800
Format: 001010wwwwttssss
——— Workspace register destination
------ Source -
21

—
-

—

Marinchip 9900 Assembler User Guide
5. 3. 4. MPY - Multiply

MPY <gas>, <wa>

The contents of the general address operand <gas> and the workspace
register <wa> are multxﬁlled as two unsigned 156 bit quantities. The 32
bit product is stored wit the high-order 16 bits in the workspace
register <waX> and the low order 16 bits in the next higher register (if
“<wa> is R15, the low order word will be stored in the next word in memory
following the current workspace register set). Note that this instruction
performs UNSIGNED multiplication, and hence if used with two’s complement
numbers will Troduce incorrect results. If used with signed quantities,
user code must handle the sign. This instruction changes no status bits

Status bits affected: none.
Op code: 3800

Format: . 001110wwwwttssss
——— Workspace register destination
—————— Source
5.3 5. D1V - Diwvide
DIV <gas>, <wa>

The 32 bit quantity with the high order 16 bits in workspace register <wa>
and the 1low order 16 bits in the next consecutive memory location is
divided by the 16 bit contents of the general address operand <gas>. The
division 1s done treating both operands as unsigned numbers. The quotient
from the division is stored in workspace register <wa>, and the remainder
is stored in the next consecutive memory location (which will be the next
higher register unless <wa> is R15). If the quotient from ¢the division
would exceed 65535 (OFFFF hexadecimal), the operation will be aborted and
the overflow status bit will be set. . .

Status bits affected: Overflow
Op code: 3C00

Format: O0i1l1lwwwwttssss
—-—— Workspace register destination
—————— Source
5. 4. Shift instructions

The shift instructions shift the contents of a workspace register inﬁ@

various manners. The number of . bits to shift 1is determined in the
following manner: each shift instruction contains a four bit M"shift
count" field. If that field is nonzero, the shift instruction shifts that
number of bits. I#+ the shift count field is zero, the low—order 4 bits of
workspace TrTegister O (RO) are used for shift count. If the low—-order 4
bite of RO are zero, the shift will be 16 bits, otherwise the shift will
he the number represented by the low 4 bits of RO.

5.4 1. SLA - Shift left arithmetic

SLA <waZ, CcountX

The contents of the workspace rTegister <«{wa> are shifted left by the
specified number of bits, and the result is stored back in <wa> = Vacated
bit positions on the rxght are filled with 2eroes. If the sign bit of the
ogerand changes during the operation, the overflow status bit will be set.
The wvalue of the last bit shifted out will be Rlaced in the carry status
bit. The result 1is compared to zero and the status bits are set
accordingly. .

Status bits affected: l.ogical greater than, arithmetic greater than,

22

(T

TN
T

Marinchip 9900lAssembler User Guide

equal, carry, overflouw.
Op code: 0A0O

Format: 00001010ccccwwww
——— Shift count
——— Workspace register
S. 4. 2. SRA ~ Shift right arithmetic
SRA <wa, <count>

The contents of the workspace register <wa> are shifted right the
specified number of bits, and the result is stored back in <wa>. Vacated
bits on the left are filled with the original sign bit of the operand.
The wvalue of the last bit shifted out 1s placed in the carry status bit.
The result is compared to zero and the status bits are set accordingly.

Status bits affected: Logical greater than, arithmetic greater than,
equal, carTy.

Op code: 0800

Format: 00001000cc c cwwww
——— Shift count
———— Workspace register
5. 4. 3. SRC — Shift right circular
SRC <wa>, <count>

The <contents of the workspace register <wa> are shifted right circularly

the specified number of bits and the result is stored back in <wad. In a

circular - shift, bits shifted out of the least significant bit shift back
. into the most significant bit. The value of the last bit shifted from the

least significant position to the most significant position will be placed
in the carry status bit. The result is compared with zero and the status
bits are set accordingly. Note that although there is no left circular
shift, a right circular shift of 16-X bits "is equivalent to a left
circular shift of X bits. ,

Status bits affected: Logical greater than, arithmetic greater ¢than,
equal, carry.) .

Op code: 0Boo

Format: 00001011 ccccwwuww
—-———- Shift count
——— Workspace register- -
5.4 4. SRL. - Shift right logical
SRL <wa>, {count>

The contents of the workspace register <wa> are shifted right the
specified number of bits and the result is stored back in <wal>. Vacated
bits on the left are filled with zeroes. The value of the last bit
shifted out is placed in the carry status bit. The result is compared
with zero and the status bits are set accordingly.

Status bits affected: Logical greater than, arithmetic greater than,
equal, carry.

Op code: 0900
Format: 00001001ccccwwuww

——— Shift count
-———- Workspace register

23

[
1

L3

L

T

L —

g ! .

Marinchip 9900 Assembler User Guide
5. 5. Immediate operand instructions g%

The immediate instructions are distinguished by the fact that they take an
operand that follows the instruction in memory. The immediate
instructions are primarily vused when one of the operands is a constant
known at assembly time. The immediate instructions are further divided
into +the "Workspace rTegister immediate instructions”, where the second
operand is a workspace register, and the "Internal register immediate
instructions", where the second operand is an internal CPU register.

5.5 1. Workspace register immediate instructions
5.0.1.1 Al ~- Add immediate
Al ‘wa>, <iop

The i1mmediate operand word following the instruction 1is added to the
contents of the specified workspace register. The status bits are set as
for the add (A) instruction described above.

Status bits affected: 'Logical greater than, arithmetic greater than, :D
equal, carry, overflow.

Op code: 0240

Format: 00000010001 Ouwwww wwww = workspace register
ilididdddidiiiii Immediate operand
5.5.1. 2. ANDI - And immediate
ANDI Lwa>, {iop>

The immediate operand word is logically ANDed with the contents of the
specified workspace TrTegister, and the result is stored in the workspace
register. The result is compared with zero and the status bits are set
accordingly.

Statgs bits affected: . Logical. greater than, arithmetic greater than,
equal. ,

Op code: 0240

Format: 0000001001 00wwww wwww = workspace register)
ididdiidididiiii Immediate operand ;)
5.5.1. 3. CI -~ Compare immediate
Cl <wa>r, <<iop

The operand in the workspace register is compared with the immediate
ggerand following the instruction and the status bits are set to reflect
e

comparison. The arithmetic greater than bit is set if the register
operand is greater than the immediate operand when both are considered as
16 bit two’s complement signed numbers. The logical greater than bit is
set if the register operand 1s greater than the immediate operand when
both are <considered as 16 bit unsigned numbers. The equal bit is set if
the two operands are equal.
Stat?s bits affected: Logical greater than, arithmetic greater than,
equal.
Op code: 0280
Format: 000000101000wwuww wwww = workspace register

ididiiddididiiii Immediate operand

24)

fl Marinchip 9900 Assembler User Guide
¢ s5.5.1.4 LI - Load immediate

;I LI <wax, <iop>

The immediate operand is loaded into the designated workspace register.
FZ The zalui loaded 1is compared against zero and the status bits are set
accordingly.

Statgs bits affected: Logical greater than, arithmetic greater than,
(7 equal.
‘| 0p code: 0200
Format: 000000100000uwwuww wwww = workspace register
(? iddiddddididddiii Immediate operand
i
5.5.1.5. ORI - Or immediate
jJ ORI <wa>, <iopx

The contents of the workspace register are 1logically ORed with the

immediate operand and the result is stored back in the worksgace register.

The result 1is compared against 1zzero and the status its are set
= accordingly, :

Status bits affected: Logical greater than, arithmetic greater than,

E] equal.

Op code: 0260

Format: 0000001001 1 Owwww wwww = workspate register
idddddidddidiiiiid Immediate operand

5. 5. 2. Internal register immediate instructions

(’ 5.5.2. 1. LIMI - Load interrupt mask immediate

LIMI Ciop>

i The least significant 4 bits of the immediate operand are placed in the
interrupt mask portion of the status register. This causes the CPU to
immediately start to mask interrupts accordln% to the new mask valvue.

. This instruction is most often used as the first instruction of a system
f*} subroutine called with BLWP and which is called from various_ interrupt
J levels. I+ the first instruction of the routine.performs a LIMI to lock
L out the level of the highest interrupt which mag call the routine, the
subroutine 1is guaranteed that it can run to completion without being
interrupted (this because the BLWP instruction delays interrupt service
for one instruction time to qive the LIMI a chance to be executed). When
the subroutine returns via a RTWP instruction, the RTWP will reload the
status register with the interrupt mask at the time the subroutine was
called and the environment will be restored.

(F—
—

{j Status bits affected: none.
Op code: 0300
[Format: 0000001100000000
LJ 000000000000iiii iiii = new interrupt mask
.. 5.5 2. 2. LWPI - Load workspacé pointer immediate
\}
I
- LWPI Ciop>

The immediate operand is loaded into the workspace pointer register in the

a5

Marinchip 9900 Assembler User Guide

CPU. References to workspace re 1sters made after the execution of the
LWPI instruction will refer the 16 word (32 byte) area of memory
starting at the address specified bg the immediate operand.

Status bits affected: none.

Op code: 02E0

Format: 0000001011100000

idiidiidddiidiiid New workspace address
5. 6. Jump instructions

The Jump instructions are conditional and unconditional instructions that

allow transfer within the range from =128 to +127 words from the
instruction Followlna the jump instruction itself. Each jump instruction
contains an bit 1splacement Field. If the fumg is taken, the
displacement field 1is extracted, sign extended to 16 .bits, shifted left

one bit, and added to the contents of the pro?ram counter whxch will point
to the word following the jump instruction he result of this is that if
the displacement field is » no transfer occurs, it -1, the ump

nstruction itcself 1is the destination, and otherwise the displacement is
the signed number of words to jump.

The assembler auvtomatically computes the displacement field for jump
instructions, so the programmer need not be concerned with the details
explained above. When a jump instruction is coded, its operand is an
expression (normally fust a program label) for the destination of the
Jump. The assembler will insert the correct displacement in the jump
instruction, and give a truncation error flag if the displacement is too

large to fit in the instruction. For example, in the sequence of code:
JMP TAG1
MOV RO, RS

TAG1 BL SUBR

The assembler would insert a displacement of 1 in the JMP ‘instruction.
5. 6. 1. JMP - Jump unconditional
JMP <destination>

The destination address, indicated ba the displacement in the instruction,
will be the next instruction execute

Status bits affected: none.
Op code: 1000 :)
Format: 00010000dddddddd h
———————— Displacement
5. 6. 2. JEQ - Jump equal
JEQ <destination>

The destination address is jumped to if the equal status bit is set
Status bits affected: none
Op code: 1300

Format: 00C10011dddddddd
———————— Displacement

[
&l,‘- o

!

Marinchip 9900 Assembler User Guide
5. 6. 3. JNE = Jump not equal

 JUNE <destinationZ

The destination address is>Jumped to if the equal status bit is clear.

Status bits affected: none.
Op code: 1600
Format: 00010110dddddddd
-------- Displacement
5. 6. 4. JGT = Jump greater than
JGT <destination

The destination is jumped to if the arithmetic greater than bit is set.

Status bits aftfected: none.
Op cade: 1500
Format: 00010101dddddddd
—————— - Displacement
9. 6. 5. JLT - Jump less than
JLT <destination>

The destination is Jjumped to if both the arithmetic greater than bit and
the equal bits are clear in the status register.

Status bits affected: none.
Op code: 1100 .
Format: 00010001dddddddd
———————— Displacement
5.4.6. JH = Jump high
JH <destination>

The destination address is jumped to if the logical greater than bit is
set and equal bit is clear. B

Status bits affected: none.
Op code: 1B0OO
Format: 00011011dddddddd
———————— Displacement
5.6. 7. JHE. - Jump high or equal
JHE .destination>

The destination address is éumped to if either the logical greater than or
the equal status bit are set in the status register.

Gtatus bits affected: none.
Op code: 1400 -
Format: 00010100dddddddd

27

Marinchip 9900 Assembler User Guide .
———————— Displacement é@

5. 6. 8. JL = Jump louw

JL <destination>

The destination address is fumped to if both the logical greater than and
the equal status bits are ¢

ear. :
Status bits affected: none
Op code: 1A00
Format: 00011010dddddddd
~~~~~~~~ Displacement
5. 6. 9. JLE - Jump low or equal
JILE “destinations

The destination address is jumped to if either the 1logical greater than
bit is clear, or the equal bit is set- in the status register. :

Status bits affected: none. . E)
Op.code: 1200

Format: 00010010dddddddd
———————— Displacement
5.6.10. JOC - Jump on carry
Jaoc <destination>

The destination address is jumped to if the carry bit is set in the status
register.

Status bits affected: none.
Op code: 1800
Format: 00011000dddddddd
———————— Displacement
S5.6.11.  JNC - Jump no carry _3
JNC <destination>

The destination address is jumped to if the carry bit 1is clear 1in the
cstatus register.

Status bits affected: none.

Ob code: 1700

Format: 00010111dddddddd
--------- Displacement
S5.6.12. JNO = Jump no overflow
JNOQ <destination>

The destination address is jumped to if the overflow bit is clear in the
status register.




|

Marinchip 9900 Assembler User Guide

Status bits affected: none.

F)Jp code: 1900

[

]

 Format: 00011001dddddddd
———————— Displacement
5. 4.13. JOP - Jump odd parity
JOP <{destination>
The stin at1on is jumped to if the garltg bit in the status register 1is
set. (Th parity bit is set by the byte instructions if the number of
bites in the result byte is odd.
Status bits affected: none.
Op code: 1Ccoo
Format: 00011100dddddddd
———————— Displacement
5. 7. Internal register store instructions

{

[

|
J
J
|

i

|
|

|

ﬁ}

—

|
1
J
)

The internal register store instructions store the contents of internal
CPU registers into registers in the workspace. None of these instructions
affect any status bits.

o

. 7.1, STST — Store status

STST Lwa>

The contents of the CPU status register are stored into the designated
workspace register.

Status bits affected: none.
Op code: 02COo
Format: 000000101 1 00wwww
——— Workspace register

3.7 2. STWP - Store workspace pointer

STWP <wal -
The <contents of the CPU workspace pointer are stored into the designated
workspace Tegister. This instruction stores the memory address at_which
the current workspace starts into one of the workspace registers. This is

useful in code which needs to access its workspace as memory but which
does mnot explicitly know 1its workspace location or may be called with
several different workspaces.

Status bits affected: none.
Op code: 0240
Format: 00000010101 0wwuwuw .
-—— Workspace register

5.8 Control instructions

These instructions perform control functions on the CPU. These
instructions actually have little effect in the TMS9900, but are executed
by auxiliary hardware in the M9P900 CPU, g0 the action of these

29




"v — ‘ ‘—-.<.__1 - i -v. .~

Marinchip 9900 Assembler User Guide
instructions in other TMS9900 systems cannot be guaranteed.
5.8.1. IDLE — Idle processor

IDILE

The execution of instructions is suspended wuntil the occurrence of an
interrupt, or an external RESET or LOAD signal. Note that the program
counter is incremented before execution is suspended, so that the rogram
counter captured by an interrupt that terminates the IDLE state wilq point
to the instruction following the IDLE instruction. ,
Status bits affected: none.

Op code: 0340

Format: 0000001101000000

5. 8. 2. LREX — Load and restart execution

it

i

X

The processor performs a context switch through a vector located at
absolute memory address OFFFC, and prevents all interrupts except the’
non—-maskable interrupt (level 0). In a normally configured M9%200 system

this will return control to the debug monitor or disc boot PROM in high
memoTy.

Status bits affected: none.
Op code: 0O3EO0
Format: 0000001111100000

5.8.3. RSET - Reset

RSET

The processor halts, sends 'a signal which resets all memory and 1/0
devices, locks out all interrupts (except level O), and resumes execution
by performing a context switch through a vector at memory address 0000.

The action of this instruction is i1dentical to pressing the RESET switch
on the computer front panel.

Status bits affected: none.

Op code: 03460 _

Format: 0000001101100000

5. 8. 4. CKON - Clock on
CKON

This instruction generates a signal on the MP900 CPU board which 1is
available For user application, but causes no other action.

Status bits affected: none.
Op code: 03A0
Format: 0000001110100000

30




Marinchip 9900 Assembler User Guide
5.8.5. CKOF - Clock off

CKOF

This 1instruction generates a signal on the M9900 CPU board which is.
available For user application, but causes no other action.

Status bits affected: none.
Op code: 03CO
Format: 0000001111000000

5.9 Extended operation instruction

The extended operation instructions allow user extension of the hardware
instruction set bu providing instructions that invoke subroutines via a

vector in low memory. Marinchip software uses some of the XOP codes for
various functions and pseudo instructions are defined for those special
codes. Refer to the section in this manuval on pseuvdo instructions for

mare information on those codes.
3. 9. 1. X0P - Extended cperation

xaoe <gas>,{index>

A context switch will be performed with a vector whose address is computed
by adding 040 hexadecimal to four times the <index> value coded on the
instruction. The first word of that vector will be 1loaded as the
workspace pointer, and the second word will be 1loaded into the program
counter, ,perPormin% a branch to that location. Within the new workspace
~egister set, rtegister R13 will be set to the address of the workspace in
efFfect when the XOP was executed, R14 will be set to the address of the
next instruction following the XOP, and R15 will be loaded with the
contents of the status register. The effective address of the operand
will be evaluated and stored in register R11 of the new workspace. Note
that what is stored is the ADDRESS of the operand, NOT the operand valve.
The processor will not honour interrupt requests until the execution o#f
the next instruction following the XOP. This permits the XOP routine to
alter the interrupt mask to protect its common data. The XOP instruction
so sets the workspace switched to that the instruction implementina
touginetmag return after the XOP instruction simply by executing a RTW
instruction.

Status bits affected: Extended operatibn.
Op code: 2C00

Format: 001011iiiittssss
—-——— Index
—————— Source
5 10. Communication register unit (CRU) instructions

The CRU instructions transfer data to and from the Communication Register
Unit, which 1is the ©bit-oriented 1I/0 facility of the TMS9900. The
instructions are divided 1into . two groups. those which reference single
bits, and those which address groups of from 1 to 16 bits.

5.10. 1. CRU single bit instructions '

The CRU'single bit instructions address bits in the CRU by adding a signed
displacemen in the instruction to a CRU base address in workspace
register Rl2. The CRU address space provides 4096 individually
addressable bits, .so onl the 1low. order 12 bits of the sum of the
displacement and the contents of R12 will be used as the CRU bit address.

31




Marinchip 9900 Assembler User Guide

)

The displacement field in the instruction will be sign—-extended before “%

adding it to the <contents of R12, so the displacement should be
interpreted as a two’s complement integer.

95.10. 1. 1. SBO - Set bit to one

- 8SBO “<displacement>

The addressed CRU bit is set to one

Status bits affected: none.
Op coade: 1DOO
Format: 00011101dddddddd
———————— Displacement

% 10. 1. 2. SBp7 -~ Set bit to zero

&SBZ <displacementX™
The addressed CRU bit 1is set to zero. , : i)
5tatus bits affected: none.
Dp-code: 1EOO
Format: 00011110dddddddd
S TEmme Displacement
5.10.1. 3. TB — Test bit

B “Zdisplacement> N

The addressed CRU bit is read in and the equal status bit is set to the
value of the bit. In other words, if the CHU bit was a one. a JEQ

instruction will jump following the T7TB; if the bit was a zera, a JUNE
instruction will jump.

Status bits affected: Equal.
Op code: 1FO00

Format: 00011111dddddddd
--------- Displacement

5.10.2. CRU multiple bit instructions

The CRU multiple bit instructions, LDCR and STCR, allow groups of from 1!
to 16 bits to be transferred to and from the CRU. These instructions
contain a "count" field which specifies the number of bits <to be
traneferred. If the count field is a number from 1 to 15, that number of
bits will be transferred. I#f the count field is zero, 146 bits will be
transferred. Workspace register R12 must be loaded with the address of
the starting bit prior to the &execution of these instructions. Bit
addresses will begin with the bit number in R12, and increment with each
bit sent. These instructions behave as byte instructions if the count
field specifies 1 to B8 bits, and as word instructions iF the count field
specifies 9 to 16 bits. This means that if the transfer specifies | to 8
bits, the general address will ©be taken as a byte address., an
auto—increment specification will cause the register to be incremented by
one, and the parity status bit will be set if the number of one bits
transferred 1is odd and cleared otherwise. If the transfer specifies 9 to
16 bits, the general address will be a word address, an avuto-increment
specification will increment the register by two, and the parity bit will
not be afffected by the instruction. In addition, on 9 to 1& »bit
transfers, if the general address is odd, the date will be byte—reversed




|

%
Gy

J
|

6. Pseudo—instructions

Marinchip 9900 Assembler User Guide

before being sent to the CRU (LDCR) or stored in memory (STCR).

©5.10. 2. 1. LDCR — Load communication register

LDCR <gasi,Lcountl

The number of bits specified by <count> are serially transferred to the
CRU starting with the bit number in workspace Tregister R12. {gas>

specifies the address Ffrom which data is to be taken, and 1is a te
address if <countl is 1 to 8, and a word address if count is 9 to 16. he
bits transferred will be compared to zero and the status will be set
accordingly, and if the number of bits transferred is 8 or less, the

parity bit will be set if the number of one bits transferred 1is odd and
cleared otherwicse.

Status bits affected: Logical greater than, arithmetic greater than,
equal, paritu (i1f count is From 1 to B).

Op code: 3000

Format: 001100ccccttssss
———— Count
—————— Saurce
0. 10. 2. 2. STCR — Store communication register
STCR <.gad’, <count> ,
The number of bits sgecified by <count> will be serially read from the CRU
starting at the bit number in workspace register R12. The bits read are
right justified in a byte if the count is B8 or less, and a word if 9 or
moTe, and wunfilled its are set to zero. The resultin? byte or word is
stored at the general address <«gad>. The data stored will be compared to

zero and the status bits set accordinglu. If the length of transfer is 8
or fewer bits, the parity bit will be set if the number of 1 bits in the
data transferred i3 odd and cleared otherwise.

Status bits affected: Logical reater .than. arithmetic greater than,
equal, parity (if transfer is from to 8 bits).
Op code: 3400
Format: 001101ccccttdddd
——— Count

—————— Destination

The assembler provides pseudo instructions for several commonl vsed
special instructions. A pseudo instruction is simplg an alternate name
for an instruction or group of instructions that would be more cumbersome
to write out explicitly

6. 1. FLOP - Floating operation

FL.OP Lgax
This pseudo instruction gerierates the same code as the sequence:
xap <gaz, 2

The FLOP instruction is wused to invoke the floating point emulation
software in the Marinchip operating sustem.

33




‘Marinchip 9900 Assembler User Guide

6. 2. JSYS -~ Jump to system 'T)

JOYS “ya
This pseudo instruction generates the same code as:
»ap Tyal 1

JEYS is used as the standard Marinchip operating system call.

6.3, NOP - No operation

MOP

The THMS??00 deoes not have an explicit no operation instruction. The NOP
psevdo instruction generates a:

JMP Hag

which by Jumping to the next instruction in line achieves the same effect

&4, KT — Return , 7
RT
The RT pseudo instruction generates an indirect branch through register
11, e. 9.
B #R11
This is the method used most often for returning from a subroutine <called
with the BL instruction, since the BL instruction loads the return address
into R11. .
5. 3. Stsck pseuvdo instructions

The TMSP900 does not have special "stack instructions”, but its powerful
auto-increment and indirect addressing modes peTmit the grogrammer to
define and manipulate stacks using the normal instructions. he Marinchip

assemhler contains pseudo instructions which auvtomatically generate the
instructions used in stack manipulation.

In order to eFPectivelg use a stack, one of the workspace registers must
ack pointer" and an area of memorz_mus be reservegﬂg
i s

be dedicated as a "s : ‘ -
as & stack area. The stack pointer register must be initially set equa¥

to the start of the stack area. Then, any rtegister may be save bz
pushing it onto the stack and restored by popping it from the stack. I

is important to remember that a pog restores that last thing pushed on the
stack, 50 saves and restores must be done in reverse orderT. The stack
facility is most often used to save return points to subroutines. If each
subroutine begins by pushing the return point register (R11) on the stack
and returns by jumping to the address on the stack top, subroutines may be
nested to a depth limited onl3 by the storage assigned to the stack area.
I'he user need not be concerned with saving and restoring the return point,
and coding of recursive subroutines becomes almost auvtomatic.

In the following discussions, “<spx will Dbe
workspace registers. It is common
stack pointer,

assumed to be one of the

ractice to use register R1O as the
but the user need not follow this convention.

4.5.1. DSTK - Detine stack pointer

DSTK Lepd

The DSTK directive generates no

2 code, but defines <«<sp> as the stack
pointer register. All stack

pseudo instructions which follow the DSTK



.
J

)
1

 — | S—
i ! { :<
{ : { =

Marinchip 9900 Assembler User Guide

directive will use that register to TrTeference the stack. The stack
rointer register may be changed for another block of code bg a subsequent
OSTK directive. It 1s critical to rTemember: DSTK onl efines which

- vegister is being used for the stack pointeri an ISTK must be used to

initialise the register itself.

&.5. 2. ISTK - Initialise stack pointer
ISTK <expressioni -

The ISTK directive generates a Load Immediate of the stack pointer

. Tregister (previously defined by a DSTK directive) with the value of the

:.expressions which will normally be the label at the_start of the storage

block which 1s being uvsed as the stack area. The ISTK directive 1s

norma11¥ used at the start of a program to generate the load ¢that
y

initial sete up the stack pointer register.
H D3 PSHR - FPush value on stack
PaidR Tya

b2}

The operand identified by {ga} is pushed onto the top of the stack and the
stack pointer is incremented.

6.3.4. POPR - Pop value from stack .

POPR Zgaz
The value on the top of the stack is popped into the location indicated by
<.ga> and the stack pointer 1s decremented.

6. 2. 5. POPJ - Jump to stack top

POPRJ

The wvalue at the top of the stack is loaded into register R11, the stack
ointer is decremented, and a branch to the address in R11 is performed.
his 1instruction 1is wused to return from a subroutine which pushed its

return point using a8 PSHR instruction.

&9, 6. Example of stack use

The following program fragments contain definition of a stack and its wuse
by a sample subroutine which saves its return point and registers Ré6 and
R7 using the stack, then restores them from the stack and returns to the
saved call address.

Sample program

DATIL R10
DEGIN IS5TK STACKAB Initialise stack pointer

DL XSUB : Call subroutine

. X8UB - A typical subrovutine
XSUB PSHR R11l Save return point

PSHR R& Save Ré6

PSHR R7 Save R7



]

’

Marinchip 7900 Assembler User Guide

FOPR R7 Restore R7

FOPR Ré& Restore Ré&

POPJ . . Return to caller
7. Machine reference information

This secticn of the manual contains general reference
pertaining to the CPU and its instruction set.

7. 1. Instruction summary
Mnemonic Op code Instruction

A AOCO Add words

s BOOO Add butes

o 07440 Abcolute value

o L (RHPEI) Add 1mmediate

RN 040 And 1mmediate

i 0440 Branch

al 0680 Branch and link

Biwk 0400 Branch and load workspace pointer
C- 38000 Compare words

CB 2000 Compare bytes

CI 0280 Compare immediate

CKOF 03C9O Clock off

CIKON 03”0 Clock on

CLR 04CO Clear

CcOC 2000 Compare ones corresponding
CZC 2400 Compare zeroes corresponding
DEC 05600 Decrement -

DECT 0640 Decrement by two

pIv 3C00 Divide

IDLE 0340 Idle CPU

INC 0580 Increment

INCT 05CO Increment bg two

INV 0540 Invert (one’s complement)
JEQ 1300 Jump equal

JGT 1500 Jump greater than

JH 1800 Jump high

JHE 1400 Jump high or equal

Wl 1A00 Jump low

JILE 1200 Jump low or equal

JILT 1100 Jump less than

JMP 1000 Jump

JNC 1700 Jump no carry

JNE 1600 Jump not equal

JNG 1700 Jump no overflow

JOC 1800 Jump on carrTy

JOpP 1C00 Jump odd parity

LLOCR 3000 Load communication register
L1 0200 Load immediate

LIMI 0300 Load interrupt mask immediate
LREX 03E0D Load and restart execution
Ly 02E0 Load workspace pointer immediate
MY CQ00 Move words

MOV3 DOOO Move bytes

MRy 3800 Multiply

NEG 0500 Negate

ORI 0:260 Or immediate

36

information



Marinchip 9900 Assembler User Guide
C‘ RSET 03460 Reset :
(] RTWP 0380 Return to workspace pointer
S 6000 Subtract words
53R 7000 Subtract bytes
— SBO 1100 Set CRYU bit to one
| 8BZ 11200 Set CRU but. to zero
{ SETO 0700 Set to all ones
SLA QANO0 Shift left arithmetic
50C EQOO Set ones corresponding word
[] SCCB FO00 Set ones corresponding byte
| SRA 0300 Shift right arithmetic
SRC oBQO Shift right circular
SRL 0200 Shift right logical
STCR 3400 Store communication register
| STST 02C0 Store status register
| | STWP 02A0 Store workspace pointer
SWPB 04LCO Swap bytecs
giC 3000 Set z2eroes corresponding word
[l 5Z¢CHB 2000 Set zeroes corresponding byte
wTE LFOO Test CRU bitk
X 0430 Execute
@{ K0P 2C00 Extended operation
d ] XOR 2800 Exclusive or '

]
~1
J

o2, Status register bits

—

”
s mmem—— Interrupt mask
+———— - —— Extended operation
e i Parity odd
—————————————————————— Overflow
e Carr
—————————————————————————— Equa
———————————————————————————— Arithmetic greater than
- ——————— ittt Logical greater than

c—m————— )

§omemmmem D
4 ommmmmemee |

- i
e

[‘ 7.3. General address types

The tt field in a general address sgeciPication indicates the addressing
- made of the operand. The wvalues, their meaning., and sample assembly
( language coding 15 given below:

tt Coding Meaning
G
|| 00 R7 Contents of workspace register
)01 #R9 Renister contains address of operand
10 CTAG Direct: address follows instruction
19 @CTAG(RZ2) Indexed: add register to word following
Y #R3+ Reqister contains address of operand,
‘J avto-increment register by operand langth
Both direct and indexed operands have a code of 1O in the type (tt) field.
— and are distin2u1shed b? the contents of the register -ield. Direct
| vperands sﬁeci y O, while indexed operands specify the register to be used
) to index the operand. Note therefore that register O may not be wused as
an index register, but it may be wuvsed with indirect (tt=01) or

auto—-increment (tt=11) addressing.

If the address mode 1is diréct or indexed (tt=10), a word will follow the

-/ instruction containing the direct address. If the instruction contains
two general addresces Te.?;. MOV), and both are direct or indexed, the
-1 source operand address will precede the destination address. For example,
J the instruction: :
[0}V 01200(R7). 08000

é; will assemble into: )
’ 37




1 ]

C

Marinchip 9900 Assembler User Guide
£817

1200
8000

8. Sample assembly language program

The follewing is an example of gan

1 ¢ 2 X & assembl? language program
accerding to the specifications of this manual.
Copy text subroutine
This subroutine will €opy a string of bytes of
arbitrary length from one location to another
The two areas must not overlap.
To call:
[ RO, <{lenqth in bytes
L1 Rl, <souTce address>
1T He, {destination address™
2. ) COPYTX
Zreterns ) RG, R1, R2, Riti destroyed
IDT "COPYTEXT" Program id
COPYTXE  DEC RO ' More to copy
JLT CORPYTD No. Return
MOYB #R1+, #R2+ Yes. Copy a byte
JiMP - COPYTX

Keep on going
COPYTD RT Return to caller
' END

written




