
§1 ANAGRAM INTRODUCTION 1

1. Introduction.

ANAGRAM

Anagram Finder

by John Walker

This program is in the public domain.

#define PRODUCT "anagram"

#define VERSION "1.1"

#define REVDATE "2003−02−15"

http://www.fourmilab.ch/

2 COMMAND LINE ANAGRAM §2

2. Command line.

ANAGRAM is invoked with a command line as follows:

anagram options [’target phrase’] [seed. . .]

where options specify processing modes as defined below and are either long names beginning with two
hyphens or single letter abbreviations introduced by a single hyphen. The target phrase is the phrase for
which anagrams will be sought. If one or more seed words is given, only anagrams containing all of those
words will be shown. The target and seed may be specified by options or CGI program environment variables
as well as on the command line.

§3 ANAGRAM OPTIONS 3

3. Options.
Options are specified on the command line prior to the input and output file names (if any). Options may

appear in any order. Long options beginning with “−−” may be abbreviated to any unambiguous prefix;
single-letter options introduced by a single “−” may be aggregated.

−−all

Generate all anagrams in −−cgi −−step 2.
−−bail

Bail out after the first anagram found containing a word. In many cases this drastically
reduces the time required to run the program. You can review the list of words appearing
in anagrams and then request a complete list of anagrams containing “interesting” ones.

−−bindict, −b file
Load binary dictionary from file. The default binary dictionary is wordlist.bin.

−−cgi
When executed as a CGI program on a Web server, set options from form fields. These
settings may be overridden by command line options which follow −−cgi.

−−copyright

Print copyright information.
−−dictionary, −d file

Load word list from file. This is (only) used with the −−export option to compile a word
list into a binary dictionary. The default word list is crossword.txt.

−−export file
Create a binary dictionary file from the word list specified by the −−dictionary option
of the default crossword.txt.

−−help, −u
Print how-to-call information including a list of options.

−−html
Generate HTML output when run as a CGI program on a Web server. The HTML is
based on the template file specified by the −−template option, which defaults to a file
named template.html in the current directory.

−−permute, −p ’phrase’
Print all permutations of words in the given phrase. The phrase must be quoted so that
blanks separating words are considered part of the single phrase argument.

−−seed, −s word
Find only anagrams which contain the specified word. You may specify as many seed
words as you wish (each with a separate −−seed option) to restrict the anagrams to those
containing all of the seed words. To obtain a list of words which appear in anagrams of a
phrase, specify the −−bail option. You can also specify seed words on the command line
after the options and target phrase, if any.

−−step number
Perform step number when operating as a CGI program on a Web server. Step 0, the
default, selects non-CGI operation; the program acts as a command line utility. In step 1,
a list of words appearing in anagrams is generated. Step 2 generates anagrams in which a
selected word appears (or, all anagrams if the HTML template permits this option). Step
3 generates all permutations of words in a selected anagram.

−−target, −t ’phrase’
Generate anagrams or permutations for the specified phrase, which must be quoted if it
contains more than a single word. If no −−target is specified, the program uses the first
command line argument as the target.

−−verbose, −v
Print diagnostic information as the program performs various operations.

−−version

Print program version information.

4 USING ANAGRAM AS A WEB SERVER CGI PROGRAM ANAGRAM §4

4. Using anagram as a Web Server CGI Program.
It is possible to install anagram as a CGI (Common Gateway Interface) program on a Web server and

thereby provide a Web-based anagram finder. In most cases this would be extremely unwise! It is
extremely easy for an innocent user or pimple-faced denial of service moron to enter a sequence of letters
for which tens of millions of anagrams exist and thereby lock your server in a CPU-intensive loop for many
minutes, then clog your ISP connection with the enormous results. Having done so, the latter variety of
bottom feeder will immediately write a script to submit several hundred such requests per second to your
server.

You may think my view of my fellow denizens of Cyberia somewhat jaundiced, but it is based on the brutal
experience of operating a public Web server since 1994, before which I was entirely too sanguine about the
sanguinary intentions of some users of freely provided resources. The only circumstances in which it may
make sense to install anagram on a Web server are on in-house Intranets where you wish to make the facility
available to users without the need to port the program to all of the platforms employed by your users, and
access logging and appropriate chastisement with an aluminium baseball bat is adequate to deal with abuse
of the resource.

There are many different Web servers, and even commonly used servers such as Apache are installed in a
multitude of different ways. Consquently, I can’t provide a cookbook procedure for installing this program
as a CGI resource, only templates which can serve as a point of departure. I cannot provide any support or
assistance in setting up a Web-based application based on this program—if you lack the experience required,
consult a Webmaster familiar with your server configuration.

First, you need to build a version of anagram configured to execute on your server hardware. Assuming
the server has the proper compiler installed, this is just a matter of following the regular build procedure.
Be sure to test the resulting program in normal command line mode to make sure it works. If your server
is a minimalist “stripped” configuration without development tools (as are many “thin servers” in “server
farms”), you’ll have to build the program on a compatible development machine then copy it to the server(s).
Be sure to test the program on the server—sometimes you’ll discover it requires shared libraries present on
the build machine but not the server; if this occurs, you’ll need to either install the libraries on the server
or re-build the application with statically linked libraries (which will result in a larger program which takes
longer to load).

Once you have a version of the program which runs on your server, copy it to your Web server’s cgi−bin
directory. If you don’t know what this means, you shouldn’t be reading this section.

Now you must install a shell script which invokes the anagram program with the appropriate options when
a client submits a request. This must provide the program the complete path for the binary dictionary and
the HTML result template files. The file cgiweb/AnagramFinder is an example of such a script; in most
cases you’ll need only to change the HTTPD declaration at the top to adapt it to your server.

The shell script provides the location of the binary dictionary file (−−bindict) and HTML template
(−−template). These are usually kept in a subdirectory of your cgi−bin directory, but may be installed
in any location accessible by CGI programs. Copy the wordlist.bin binary dictionary from the main
distribution directory and the template.html file from the cgiweb subdirectory to the designated locations.
You’ll want to review the latter file to adapt top links, etc. for your own site.

Finally, adapt the cgiweb/index.html page for your site and install it as the page where users start
the anagram generation process. Test, fix the myriad obscure bugs attendant to bringing up any new CGI
resource, and you’re in business.

§5 ANAGRAM PROGRAM GLOBAL CONTEXT 5

5. Program global context.

〈Preprocessor definitions 〉
〈System include files 52 〉
〈Program implementation 6 〉

6. The following classes are defined and their implementations provided.
〈Program implementation 6 〉 ≡
〈Global variables 35 〉
〈Class definitions 7 〉
〈Command line arguments 53 〉
〈Class implementations 8 〉
〈Global functions 34 〉
〈Main program 25 〉

This code is used in section 5.

6 DICTIONARY WORD ANAGRAM §7

7. Dictionary Word.
A dictionaryWord is a representation of a string of letters which facilitates operations common in word

games. When a dictionaryWord is initialised, auxiliary storage is set to a count of letters (neglecting case
and diacritical marks), and of the type of characters comprising the string. Operators and methods permit
quick relational tests between objects of this type.
〈Class definitions 7 〉 ≡

class dictionaryWord {
public:

string text ; /∗ The word itself ∗/
unsigned char letterCount [26]; /∗ Flattened letter count ∗/

/∗ The following fields contain counts of characters of various classes in the word. You can use
them by themselves to test whether a character of the given type is present in the word. ∗/

unsigned int upper , /∗ Upper case ASCII letters ∗/
lower , /∗ Lower case ASCII letters ∗/
digits , /∗ Numeric digits ∗/
spaces , /∗ White space ∗/
punctuation , /∗ Other ASCII characters ∗/
ISOupper , /∗ Upper case ISO letters ∗/
ISOlower , /∗ Lower case ISO letters ∗/
ISOpunctuation ; /∗ Other ISO characters ∗/
dictionaryWord(string s = "")
{

set(s);
}
dictionaryWord(int i)
{

text = "";
memset (letterCount , 0, sizeof letterCount);
upper = lower = digits = spaces = punctuation = ISOupper = ISOlower = ISOpunctuation = 0;

}
void set(string s = "")
{

text = s;
update ();

}
string get (void)
{

return text ;
}
unsigned int length (void) const
{ /∗ Return length of word ∗/

return text .length ();
}
void noBlanks (void)
{ /∗ Delete blanks ∗/

string :: iterator ep = remove if (text .begin (), text .end (),&dictionaryWord :: is iso space);
text .resize (ep − text .begin ());
update ();

}
void onlyLetters (void)

§7 ANAGRAM DICTIONARY WORD 7

{ /∗ Delete all non-letters ∗/
string :: iterator ep = remove if (text .begin (), text .end (),&dictionaryWord :: is non iso letter);
text .resize (ep − text .begin ());
update ();

}
void toLower (void)
{ /∗ Convert to lower case ∗/

transform (text .begin (), text .end (), text .begin (),&dictionaryWord ::to iso lower);
update ();

}
void toUpper (void)
{ /∗ Convert to upper case ∗/

transform (text .begin (), text .end (), text .begin (),&dictionaryWord ::to iso upper);
update ();

}
void ISOtoASCII (void);
void describe (ostream &os = cout);
bool operator≤(dictionaryWord &w);
bool operator > (dictionaryWord &w);
bool operator≥(dictionaryWord &w);
bool operator < (dictionaryWord &w);
bool operator≡(dictionaryWord &w);
bool operator 6=(dictionaryWord &w);
bool contained (const dictionaryWord ∗wbase , const dictionaryWord ∗candidate);
bool contained (const dictionaryWord ∗wbase ,unsigned char ∗candidate);
dictionaryWord operator+(dictionaryWord &w);
dictionaryWord operator−(dictionaryWord &w);
dictionaryWord operator+=(dictionaryWord &w);
void exportToBinaryFile (ostream &os);

protected:
void countLetters (void);
void update (void)
{

memset (letterCount , 0, sizeof letterCount);
upper = lower = digits = spaces = punctuation = ISOupper = ISOlower = ISOpunctuation = 0;
countLetters ();

}
〈Transformation functions for algorithms 16 〉;

};
See also sections 18, 19, and 21.

This code is used in section 6.

8 DICTIONARY WORD ANAGRAM §8

8. The countLetters method prepares the letter count table, counting characters by class as it goes.
〈Class implementations 8 〉 ≡

void dictionaryWord ::countLetters (void)
{

const char ∗cp = text .c str ();
unsigned int c;
G clear ();
while ((c = ∗cp ++) 6= 0) {

if (c ≥ ’A’ ∧ c ≤ ’Z’) {
letterCount [c− ’A’]++;

}
else if (c ≥ ’a’ ∧ c ≤ ’z’) {

letterCount [c− ’a’]++;
}
(∗(letter category [c]))++;

#ifdef ISO_NEEDED

if (c ≥ #A0) {
const char ∗flat = flattenISO [((unsigned char) c)− #A0];
while ((c = ∗flat ++) 6= 0) {

if (islower (c)) {
c = toupper (c);

}
letterCount [c− ’A’]++;

}
}

#endif
}
lower = G lower ;
upper = G upper ;
digits = G digits ;
spaces = G spaces ;
punctuation = G punctuation ;
ISOlower = G ISOlower ;
ISOupper = G ISOupper ;
ISOpunctuation = G ISOpunctuation ;

}
See also sections 9, 10, 11, 12, 13, 14, 15, 20, 23, and 24.

This code is used in section 6.

§9 ANAGRAM DICTIONARY WORD 9

9. Sometimes we wish to explicitly flatten ISO accented characters in a string to their ASCII equivalents.
This method accomplishes this. Note that this makes sense primarily for accented letters; other characters
are transformed more or less plausibly, but the results won’t make sense for most word games.
〈Class implementations 8 〉 +≡

void dictionaryWord ::ISOtoASCII (void)
{

for (string :: iterator p = text .begin (); p 6= text .end (); p++) {
if (((unsigned char) ∗p) ≥ #A0) {

int n = p− text .begin ();
unsigned int c = ((unsigned char) ∗p)− #A0;
text .replace (p, p + 1,flattenISO [c]);
p = text .begin () + n + (strlen (flattenISO [c])− 1);

}
}

}

10. The describe method writes a human-readable description of the various fields in the object to the
designated output stream, which defaults to cout .
〈Class implementations 8 〉 +≡

void dictionaryWord ::describe (ostream &os)
{

os � text � endl ;
os � " Total length: " � length () � " characters." � endl ;
for (unsigned int i = 0; i < (sizeof letterCount); i++) {

if (letterCount [i] > 0) {
cout � " " � static cast〈char〉(i + ’a’) � " " � setw (2) �

static cast〈int〉(letterCount [i]) � endl ;
}

}
os � " ASCII: Letters: " � (upper + lower) � " (Upper: " � upper � " Lower: " �

lower � "). Digits: " � digits � " Punctuation: " � punctuation � " Blanks: " �
spaces � endl ;

os � " ISO: Letters: " � (ISOupper + ISOlower) � " (Upper: " � ISOupper �
" Lower: " � ISOlower � "). Punctuation: " � ISOpunctuation � endl ;

}

10 DICTIONARY WORD ANAGRAM §11

11. This method writes a binary representation of the word to an output stream. This is used to create
the binary word database used to avoid rebuilding the letter and character category counts every time. Each
entry begins with the number of characters in the word follows by its text. After this, 26 single byte letter
counts are written, followed by 8 bytes containing the character category counts.
〈Class implementations 8 〉 +≡

void dictionaryWord ::exportToBinaryFile (ostream &os){ unsigned char c;
#define outCount (x)c = (x); os .put (c)

outCount (text .length ());
os .write (text .data (), text .length ());
for (unsigned int i = 0; i < sizeof letterCount ; i++) {

os .put (letterCount [i]);
}
outCount (upper);
outCount (lower);
outCount (digits);
outCount (spaces);
outCount (punctuation);
outCount (ISOupper);
outCount (ISOlower);
outCount (ISOpunctuation);

#undef outCount
}

12. We define the relational operators in a rather curious way. They test whether a word is “contained”
within another in terms of the count of letters it contains. A word is less than another if it contains fewer
of every letter. For example “bet” is less than “beet” because it contains only one “e”. This definition
of magnitude is extremely useful in a variety of word games, as it permits quick rejection of inapplicable
solutions.

Since the various operator implementations differ only in the relational operator applied across the
letterCount arrays of the two arguments, we can stamp out the code cookie-cutter style with a macro.
#define dictionaryWordComparisonOperator(op)

bool dictionaryWord ::operator op (dictionaryWord &w)
{

for (unsigned int i = 0; i < sizeof letterCount ; i++) {
if (¬(letterCount [i] op w.letterCount [i])) {

return false ;
}

}
return true ;

}
〈Class implementations 8 〉 +≡

dictionaryWordComparisonOperator (<) ;
dictionaryWordComparisonOperator (>) ;
dictionaryWordComparisonOperator (≡) ;
dictionaryWordComparisonOperator (6=) ;
dictionaryWordComparisonOperator (≤) ;
dictionaryWordComparisonOperator (≥) ;

§13 ANAGRAM DICTIONARY WORD 11

13. Addition and subtraction are defined as concatenation of strings for addition and deletion of characters
in the right hand operand from the left hand string (with, in both cases, recomputation of the parameters).
The += operator is implemented in a particularly efficient manner since we don’t need to re-count the letters
and categories—they may simply be summed in place.
〈Class implementations 8 〉 +≡

dictionaryWord dictionaryWord ::operator+(dictionaryWord &w)
{

dictionaryWord result (text + w.text);
return result ;

}
dictionaryWord dictionaryWord ::operator+=(dictionaryWord &w)
{

text += w.text ;
for (unsigned int i = 0; i < sizeof letterCount ; i++) {

letterCount [i] += w.letterCount [i];
}
lower += w.lower ;
upper += w.upper ;
digits += w.digits ;
spaces += w.spaces ;
punctuation += w.punctuation ;
ISOlower += w.ISOlower ;
ISOupper += w.ISOupper ;
ISOpunctuation += w.ISOpunctuation ;
return ∗this;

}
dictionaryWord dictionaryWord ::operator−(dictionaryWord &w)
{

dictionaryWord result = ∗this;
for (string :: iterator p = w.text .begin (); p 6= w.text .end (); p++) {

string ::size typen = result .text .find (∗p);
if (n 6= string ::npos) {

result .text .erase (n, 1);
}

}
return result ;

}

12 DICTIONARY WORD ANAGRAM §14

14. This is a kludge. When searching for anagrams and other such transformations, we often wish to know
whether a candidate word or phrase is “contained” within another. Containment is defined as having counts
for all letters less than or equal to that of the target phrase. This test can be accomplished straightforwardly
by generating a dictionaryWord for the candidate and then testing with our relational operators, but that
clean approach can consume enormous amounts of time when you’re testing lots of candidates. This special
purpose method is passed pointers to two dictionaryWords which are logically concatenated (which is
what we need when testing potential anagrams—if you’re testing only one letter sequence, pass a pointer to
an empty word for the second argument. The argument words are tested for containment against the word
in the object and a Boolean result is immediately returned. No recomputation of letter counts need be done.
〈Class implementations 8 〉 +≡

bool dictionaryWord ::contained (const dictionaryWord ∗wbase , const dictionaryWord
∗candidate)

{
for (unsigned int i = 0; i < sizeof letterCount ; i++) {

if ((wbase~ letterCount [i] + candidate~ letterCount [i]) > letterCount [i]) {
return false ;

}
}
return true ;

}

15. This is a version of the contained method which directly uses a pointer into the binary dictionary.
This avoids the need to construct a dictionaryWord for the candidate, but rather tests the letter counts
“just sitting there” in the binary dictionary item.
〈Class implementations 8 〉 +≡

bool dictionaryWord ::contained (const dictionaryWord ∗wbase ,unsigned char ∗candidate)
{

unsigned char ∗lc = binaryDictionary :: letterCount (candidate);
for (unsigned int i = 0; i < sizeof letterCount ; i++) {

if ((wbase~ letterCount [i] + lc [i]) > letterCount [i]) {
return false ;

}
}
return true ;

}

§16 ANAGRAM DICTIONARY WORD 13

16. The following are simple-minded transformation functions passed as arguments to STL algorithms for
various manipulations of the text.
〈Transformation functions for algorithms 16 〉 ≡

static bool is iso space (char c)
{

return isspace (c) ∨ (c ≡ ’\xA0’);
}
static bool is non iso letter (char c)
{

return ¬isISOalpha (c);
}
static char to iso lower (char c)
{

return toISOlower (c);
}
static char to iso upper (char c)
{

return toISOupper (c);
}

This code is used in section 7.

14 DICTIONARY ANAGRAM §17

17. Dictionary.
A dictionary is simply a collection of dictionaryWords. You can extract individual words or perform

wholesale operations on dictionaries. The dictionary is defined as an extension of the template class
vector〈dictionaryWord〉, inheriting and making public all of its functionality. All of the STL methods
and algorithms which apply to a vector will work with a dictionary in the same manner.

18. First of all, we need to introduce a silly little class which compares two dictionary entries by length
which is needed by the sortByDescendingLength method defined below.
〈Class definitions 7 〉 +≡

class dlencomp {
public:

int operator()(const dictionaryWord &a, const dictionaryWord &b) const
{

return a.length () > b.length ();
}

};

19. Okay, now that that’s out of the way, we can get on with the serious business. Here’s the dictionary
class definition.
〈Class definitions 7 〉 +≡

class dictionary : public vector〈dictionaryWord〉 {
public:

void loadFromFile (istream &is ,bool punctuationOK = true ,bool digitsOK = true)
{

string s;
while (getline (is , s)) {

dictionaryWord w(s);
if ((punctuationOK ∨ ((w.punctuation ≡ 0) ∧ (w.spaces ≡ 0) ∧ (w.ISOpunctuation ≡

0))) ∧ (digitsOK ∨ (w.digits ≡ 0))) {
push back (dictionaryWord(s));

}
}
if (verbose) {

cerr � "Loaded " � size () � " words from word list." � endl ;
}

}
void describe (ostream &os = cout)
{

vector〈dictionaryWord〉 :: iterator p;
for (p = begin (); p 6= end (); p++) {

cout � p~ text � endl ;
}

}
void sortByDescendingLength (void)
{

stable sort (begin (), end (),dlencomp());
}
void exportToBinaryFile (ostream &os);

};

§20 ANAGRAM DICTIONARY 15

20. To avoid the need to reconstruct the dictionary from its text-based definition, we can export the
dictionary as a binary file. This method simply iterates over the entries in the dictionary, asking each to
write itself to the designated binary dictionary file. A zero byte is written at the end to mark the end of
the table (this is the field which would give the length of the next word). The first four bytes of the binary
dictionary file contain the number of entries in big-endian order.
〈Class implementations 8 〉 +≡

void dictionary ::exportToBinaryFile (ostream &os)
{

unsigned long nwords = size ();
os .put (nwords � 24);
os .put ((nwords � 16) & #FF);
os .put ((nwords � 8) & #FF);
os .put (nwords & #FF);
vector〈dictionaryWord〉 :: iterator p;
for (p = begin (); p 6= end (); p++) {

p~exportToBinaryFile (os);
}
os .put (0);
if (verbose) {

cerr � "Exported " � nwords � " to " � os .tellp() � " byte binary dictionary." � endl ;
}

}

16 BINARY DICTIONARY ANAGRAM §21

21. Binary Dictionary.
The binary dictionary accesses a pre-sorted and -compiled dictionary which is accessed as a shared memory

mapped file. The raison d’être of the binary dictionary is speed, so the methods used to access it are
relatively low-level in the interest of efficiency. For example, copying of data is avoided wherever possible,
either providing pointers the user can access directly or setting fields in objects passed by the caller by
pointer.

The binary dictionary is created by the −−export option of this program, by loading a word list and then
writing it as a binary dictionary with the dictionary ::exportToBinaryFile method.
〈Class definitions 7 〉 +≡

class binaryDictionary {
public:

long flen ; /∗ File length in bytes ∗/
unsigned char ∗dict ; /∗ Memory mapped dictionary ∗/
int fileHandle ; /∗ File handle for dictionary ∗/
unsigned long nwords ; /∗ Number of words in dictionary ∗/
static const unsigned int letterCountSize = 26, categoryCountSize = 8;
void loadFromFile (string s)
{
〈Bring binary dictionary into memory 22 〉;

}
binaryDictionary()
{

fileHandle = −1;
dict = Λ;

}
∼binaryDictionary()
{

#ifdef HAVE_MMAP

if (fileHandle 6= −1) {
munmap(reinterpret cast〈char ∗〉(dict),flen);
close (fileHandle);

}
#else

if (dict 6= Λ) {
delete dict ;

}
#endif

}
void describe (ostream &os = cout)
{ }
static unsigned int itemSize (unsigned char ∗p)
{ /∗ Return item size in bytes ∗/

return p[0] + 1 + letterCountSize + categoryCountSize ;
}
unsigned char ∗first (void)
{ /∗ Pointer to first item ∗/

return dict + 4; /∗ Have to skip number of words ∗/
}
static unsigned char ∗next (unsigned char ∗p)
{ /∗ Pointer to item after this one ∗/

§21 ANAGRAM BINARY DICTIONARY 17

p += itemSize (p);
return (∗p ≡ 0) ? Λ : p;

}
static unsigned char ∗letterCount (unsigned char ∗p)
{ /∗ Pointer to letter count table for item ∗/

return p + p[0] + 1;
}
static unsigned char ∗characterCategories (unsigned char ∗p)
{ /∗ Pointer to character category table ∗/

return letterCount (p) + letterCountSize ;
}
static unsigned int length (unsigned char ∗p)
{ /∗ Get text length ∗/

return p[0];
}
static void getText (unsigned char ∗p, string ∗s)
{ /∗ Assign text value to string ∗/

s~assign (reinterpret cast〈char ∗〉(p + 1), p[0]);
}
static void setDictionaryWordCheap(dictionaryWord ∗w,unsigned char ∗p)
{

getText (p, &(w~ text));
memcpy (w~ letterCount , letterCount (p), letterCountSize);

} /∗ Offsets of fields in the letter category table ∗/
static const unsigned int C upper = 0, C lower = 1, C digits = 2, C spaces = 3,

C punctuation = 4, C ISOupper = 5, C ISOlower = 6, C ISOpunctuation = 7;
static void printItem (unsigned char ∗p,ostream &os = cout);
void printDictionary (ostream &os = cout);

};

18 BINARY DICTIONARY ANAGRAM §22

22. Since we’re going to access the binary dictionary intensively (via the auxiliary dictionary’s pointers),
we need to load it into memory. The preferred means for accomplishing this is to memory map the file
containing the dictionary into our address space and delegate management of it in virtual memory to the
system. There’s no particular benefit to this if you’re running the program sporadically as a single user,
but in server applications such as a CGI script driving the program, memory mapping with the MAP_SHARED

attribute can be a huge win, since the database is shared among all processes requiring it and, once brought
into virtual memory, need not be reloaded when subsequent processes require it.

But of course not every system supports memory mapping. Our autoconf script detects whether the
system supports the mmap function and, if not, sets a configuration variable which causes us to fall back on
reading the dictionary into a dynamically allocated memory buffer in the process address space.
〈Bring binary dictionary into memory 22 〉 ≡

FILE ∗fp ;
fp = fopen (s.c str (), "rb");
if (fp ≡ Λ) {

cout � "Cannot open binary dictionary file " � s � endl ;
exit (1);

}
fseek (fp , 0, 2);
flen = ftell (fp);

#ifndef HAVE_MMAP

dict = new unsigned char[flen];
rewind (fp);
fread (dict ,flen , 1, fp);

#endif
fclose (fp);

#ifdef HAVE_MMAP

fileHandle = open (s.c str (), O_RDONLY);
dict = reinterpret cast〈unsigned char ∗〉(mmap((caddr t)0,flen , PROT_READ,

MAP_SHARED | MAP_NORESERVE,fileHandle , 0));
#endif

nwords = (((((dict [0] � 8) | dict [1]) � 8) | dict [2]) � 8) | dict [3];
if (verbose) {

cerr � "Loaded " � nwords � " words from binary dictionary " � s � "." � endl ;
}

This code is used in section 21.

§23 ANAGRAM BINARY DICTIONARY 19

23. printItem prints a human readable representation of the item its argument points to on the designated
output stream.
〈Class implementations 8 〉 +≡

void binaryDictionary ::printItem (unsigned char ∗p,ostream &os)
{

unsigned int textLen = ∗p++;
string text (reinterpret cast〈char ∗〉(p), textLen);
os � text � endl ;
p += textLen ;
for (unsigned int i = 0; i < letterCountSize ; i++) {

unsigned int n = ∗p++;
if (n > 0) {

os � " " � static cast〈char〉(’a’ + i) � " " � setw (2) � n � endl ;
}

}
unsigned int upper , lower , digits , spaces , punctuation , ISOupper , ISOlower , ISOpunctuation ;
upper = ∗p++;
lower = ∗p++;
digits = ∗p++;
spaces = ∗p++;
punctuation = ∗p++;
ISOupper = ∗p++;
ISOlower = ∗p++;
ISOpunctuation = ∗p;
os � " ASCII: Letters: " � (upper + lower) � " (Upper: " � upper � " Lower: " �

lower � "). Digits: " � digits � " Punctuation: " � punctuation � " Blanks: " �
spaces � endl ;

os � " ISO: Letters: " � (ISOupper + ISOlower) � " (Upper: " � ISOupper �
" Lower: " � ISOlower � "). Punctuation: " � ISOpunctuation � endl ;

}

24. To print the entire dictionary, we simply iterate over the entries and ask each to print itself with
printItem .
〈Class implementations 8 〉 +≡

void binaryDictionary ::printDictionary (ostream &os)
{

unsigned char ∗p = first ();
while (p 6= Λ) {

printItem (p, os);
p = next (p);

}
}

20 MAIN PROGRAM ANAGRAM §25

25. Main program.
The main program is rather simple. We initialise the letter category table, analyse the command line, and

then do whatever it asked us to do.
〈Main program 25 〉 ≡

int main (int argc , char ∗argv [])
{

int opt ;
build letter category ();
〈Process command-line options 56 〉;
〈Verify command-line arguments 59 〉;
〈Perform requested operation 26 〉;
return 0;

}
This code is used in section 6.

§26 ANAGRAM MAIN PROGRAM 21

26. The global variable cgi step tells us what we’re expected to do in this session. If 0, this is a command-
line invocation to generate all the anagrams for the target (or just a list of words in anagrams if −−bail is
set). Otherwise, this is one of the three phases of CGI script processing. In the first phase, we generate a
table of words appearing in anagrams. In the second, we generate anagrams containing a selected word (or
all anagrams, if the HTML template admits that option and the box is checked). In the third, we display
all the permutations of words in a selected anagram; for this step the dictionary is not required and is not
loaded.
〈Perform requested operation 26 〉 ≡

if (exportfile 6= "") {
〈Build the binary dictionary from a word list 28 〉;

}
dictionaryWord w(target);
w.onlyLetters ();
w.toLower ();
〈Load the binary dictionary if required 27 〉;
switch (cgi step) {
case 0: /∗ Non-CGI—invoked from the command line ∗/
{

direct output = true ;
〈Specify target from command line argument if not already specified 29 〉;
if (permute) {
〈Generate permutations of target phrase 31 〉;

}
else {
〈Find anagrams for word 30 〉;

}
}
break;

case 1: /∗ Initial request for words in anagrams ∗/
bail = true ;
〈Find anagrams for word 30 〉;
generateHTML(cout , ’2’);
break;

case 2: /∗ Request for anagrams beginning with given word ∗/
〈Find anagrams for word 30 〉;
generateHTML(cout , ’3’);
break;

case 3: /∗ Request for permutations of a given anagram ∗/
generateHTML(cout);
break;

}
This code is used in section 25.

22 MAIN PROGRAM ANAGRAM §27

27. If the requested operation requires the binary dictionary, load it from the file. After loading the binary
dictionary, an auxiliary dictionary consisting of pointers to items in the binary dictionary which can appear
in anagrams of the target w is built with build auxiliary dictionary .
〈Load the binary dictionary if required 27 〉 ≡

binaryDictionary bdict ;
if ((cgi step < 3) ∧ (¬permute)) {

if (bdictfile 6= "") {
bdict .loadFromFile (bdictfile);

}
}

This code is used in section 26.

28. When the −−export option is specified, we load the word list file given by the −−dictionary option (or
the default), filter and sort it as required, and write it in binary dictionary format. The program immediately
terminates after creating the binary dictionary.
〈Build the binary dictionary from a word list 28 〉 ≡

dictionary dict ;
ofstream os (exportfile .c str (), ios ::binary | ios ::out);
ifstream dif (dictfile .c str ());
dict .loadFromFile (dif , false , false);
dict .sortByDescendingLength ();

#ifdef DICTECHO

{
ofstream es ("common.txt");
for (int i = 0; i < dict .size (); i++) {

es � dict [i].text � endl ;
}
es .close ();

}
#endif

dict .exportToBinaryFile (os);
os .close ();
return 0;

This code is used in section 26.

29. If the user has not explicitly specified the target with the −−target option, obtain it from the first
command line argument, if any.
〈Specify target from command line argument if not already specified 29 〉 ≡

if ((optind < argc) ∧ (target ≡ "")) {
target = argv [optind];
w.set(target);
w.onlyLetters ();
w.toLower ();
optind ++;

}
This code is used in section 26.

§30 ANAGRAM MAIN PROGRAM 23

30. To find the anagrams for a given word, we walk through the dictionary in a linear fashion and use the
relational operators on the letter count tables to test “containment”. A dictionary word is contained within
the target phrase if it has the same number or fewer of each letter in the target, and no letters which do not
appear in the target.
〈Find anagrams for word 30 〉 ≡

build auxiliary dictionary (&bdict ,&w);
if (optind < argc) {

for (int n = optind ; n < argc ; n++) {
dictionaryWord ∗given = new dictionaryWord(argv [n]);
seed = seed + ∗given ;
anagram .push back (given);

}
if ((seed ≤ w) ∧ (¬(seed > w))) {

anagram search (w, anagram , 0, bail , bail ? 0 : −1);
}
else {

cerr � "Seed words are not contained in target." � endl ;
return 2;

}
}
else if (seed .length () > 0) {

if ((seed ≤ w) ∧ (¬(seed > w))) {
anagram search (w, anagram , 0, bail , bail ? 0 : −1);

}
else {

cerr � "Seed words are not contained in target." � endl ;
return 2;

}
}
else {

for (unsigned int n = 0; n < auxdictl ; n++) {
unsigned char ∗p = auxdict [n];
vector〈dictionaryWord ∗〉 anagram ;
dictionaryWord aw ;
binaryDictionary ::setDictionaryWordCheap(&aw , p);
anagram .push back (&aw);
anagram search (w, anagram , n, bail , bail ? 0 : −1);

}
}

This code is used in section 26.

31. When the −−permute option is specified, load words from the target phrase into the permutations
vector and generate and output the permutations.
〈Generate permutations of target phrase 31 〉 ≡
〈Load words of target into permutations vector 32 〉;
〈Enumerate and print permutations 33 〉;

This code is used in section 26.

24 MAIN PROGRAM ANAGRAM §32

32. Walk through the target string, extract individual (space separated) words, and place them in the
permutations vector. We’re tolerant of extra white space at the start, end, or between words.
〈Load words of target into permutations vector 32 〉 ≡

bool done = false ;
string ::size typepos = target .find first not of (’ ’), spos ;
while (¬done) {

if ((spos = target .find first of (’ ’, pos)) 6= string ::npos) {
permutations .push back (target .substr (pos , spos − pos));
pos = target .find first not of (’ ’, spos + 1);

}
else {

if (pos < target .length ()) {
permutations .push back (target .substr (pos));

}
done = true ;

}
}

This code is used in section 31.

33. Generate all of the permutations of the specified words and print each. Note that we must sort
permutations so that the permutation generation will know when it’s done.
〈Enumerate and print permutations 33 〉 ≡

int n = permutations .size (), nbang = 1;
vector〈string〉 :: iterator p;
while (n > 1) {

nbang ∗= n−−;
}
sort (permutations .begin (), permutations .end ());
do {

for (p = permutations .begin (); p 6= permutations .end (); p++) {
if (p 6= permutations .begin ()) {

dout � " ";
}
dout � ∗p;

}
dout � endl ;

} while (next permutation (permutations .begin (), permutations .end ()));
This code is used in section 31.

34. Here we collect together the assorted global functions of various types.
〈Global functions 34 〉 ≡
〈Character category table initialisation 66 〉;
〈Auxiliary dictionary construction 36 〉;
〈Anagram search auxiliary function 38 〉;
〈HTML generator 42 〉;

See also section 55.

This code is used in section 6.

§35 ANAGRAM AUXILIARY DICTIONARY 25

35. Auxiliary Dictionary.
In almost every case we can drastically speed up the search for anagrams by constructing an auxiliary

dictionary consisting of only those words which can possible occur in anagrams of the target phrase. Words
which are longer, or contain more of a given letter than the entire target phrase may be immediately excluded
and needn’t be tested in the exhaustive search phase.
〈Global variables 35 〉 ≡

unsigned char ∗∗auxdict = Λ;
unsigned int auxdictl = 0;

See also sections 37, 54, 58, 62, 63, 64, and 65.

This code is cited in section 54.

This code is used in section 6.

26 AUXILIARY DICTIONARY ANAGRAM §36

36. The process of building the auxiliary dictionary is painfully straightforward, but the key is that we
only have to do it once. We riffle through the word list (which has already been sorted in descending order by
length of word), skipping any words which, by themselves are longer than the target and hence can’t possibly
appear in anagrams of it. Then, we allocate a pointer table as long as the remainder of the dictionary (which
often wastes a bunch of space, but it’s much faster than using a vector or dynamically expanding a buffer
as we go) and fill it with pointers to items in the dictionary which are contained within possible anagrams
of the target . It is this table we’ll use when actually searching for anagrams.
〈Auxiliary dictionary construction 36 〉 ≡

static void build auxiliary dictionary (binaryDictionary ∗bd ,dictionaryWord ∗target)
{

if (auxdict 6= Λ) {
delete auxdict ;
auxdict = Λ;
auxdictl = 0;

}
unsigned long i;
unsigned char ∗p = bd~first ();
unsigned int tlen = target~ length (); /∗ Quick reject all entries longer than the target ∗/
for (i = 0; i < bd~nwords ; i++) {

if (binaryDictionary :: length (p) ≤ tlen) {
break;

}
p = binaryDictionary ::next (p);

} /∗ Allocate auxiliary dictionary adequate to hold balance ∗/
if (i < bd~nwords) {

auxdict = new unsigned char∗[bd~nwords − i];
for (; i < bd~nwords ; i++) {

unsigned char ∗lc = binaryDictionary :: letterCount (p);
for (unsigned int j = 0; j < binaryDictionary :: letterCountSize ; j++) {

if (lc [j] > target~ letterCount [j]) {
goto busted ;

}
}
auxdict [auxdictl ++] = p;

busted : ;
p = binaryDictionary ::next (p);

}
}

}
This code is used in section 34.

§37 ANAGRAM ANAGRAM SEARCH ENGINE 27

37. Anagram Search Engine.
The anagram search engine is implemented by the recursive procedure anagram search . It is called with a

dictionaryWord set to the target phrase and a vector (initially empty) of pointers to dictionaryWords
which are candidates to appear in anagrams—in other words, the sum of the individual letter counts of items
in the vector are all less than or equal than those of the target phrase.

On each invocation, it searches the auxiliary dictionary (from which words which cannot possibly appear
in anagrams of the target because their own letter counts are not contained in it) and, upon finding a word
which, added to the words with which the function was invoked, is still contained within the target, adds
the new word to the potential anagram vector and recurses to continue the process. The process ends either
when an anagram is found (in which case it is emitted to the designated destination) or when no word in the
auxiliary dictionary, added to the words already in the vector, can be part of an anagram of the target. This
process continues until the outer-level search reaches the end of the dictionary, at which point all anagrams
have been found.

If the bail argument is true , the stack will be popped and the top level dictionary search resumed with
the next dictionary word.
〈Global variables 35 〉 +≡

vector〈string〉 anagrams ;
vector〈string〉 firstwords ;
vector〈string〉 anagrams for word ;
vector〈string〉 permutations ;

38.

〈Anagram search auxiliary function 38 〉 ≡
static bool anagram search (dictionaryWord &target ,vector〈dictionaryWord ∗〉 &a,unsigned int

n,bool bail = false , int prune = −1){
See also sections 39, 40, and 41.

This code is used in section 34.

39. Assemble the base word from the contained words in the candidate stack. In the interest of efficiency
(remember that this function can be called recursively millions of times in a search for anagrams of a long
phrase with many high-frequency letters), we explicitly add the letter counts for the words rather than using
the methods in dictionaryWord which compute character class counts we don’t need here.
〈Anagram search auxiliary function 38 〉 +≡

vector〈dictionaryWord ∗〉 ::size type i;
dictionaryWord wbase (0);
for (i = 0; i < a.size (); i++) {

wbase .text += a[i]~ text ;
for (unsigned int j = 0; j < binaryDictionary :: letterCountSize ; j++) {

wbase .letterCount [j] += a[i]~ letterCount [j];
}

}

28 ANAGRAM SEARCH ENGINE ANAGRAM §40

40. The first thing we need to determine is if we’re already done; in other words, is the existing base word
itself an anagram. This test is just a simple test for equality of letter counts.
〈Anagram search auxiliary function 38 〉 +≡

if (memcmp(target .letterCount ,wbase .letterCount ,binaryDictionary :: letterCountSize) ≡ 0) {
string result ;
for (i = 0; i < a.size (); i++) {

if (i > 0) {
result += " ";

}
result += a[i]~ text ;
if (static cast〈int〉(i) ≡ prune) {

break;
}

}
if (direct output) {

dout � result � endl ;
}
else {

anagrams .push back (result);
}
return true ;

}

41. Okay, we’re not done. The base word consequently contains fewer of one or more letters than the
target. So, we walk forward through the dictionary starting with the current word (the one just added to the
base) until the end. For each dictionary word, we test whether the base phrase with that word concatenated
at the end remains contained within the target or if it “goes bust” either by containing a letter not in the
target or too many of one of the letters we’re still looking for.
〈Anagram search auxiliary function 38 〉 +≡

for (; n < auxdictl ; n++) {
unsigned char ∗p = auxdict [n];
if ((wbase .length () + binaryDictionary :: length (p)) ≤ target .length ()) {

if (target .contained (&wbase , p)) {
dictionaryWord aw ;
binaryDictionary ::setDictionaryWordCheap(&aw , p);
a.push back (&aw);
bool success = anagram search (target , a, n, bail , prune);
a.pop back ();
if (bail ∧ success) {

return (a.size () > 1);
}

}
}

}
return false ; }

§42 ANAGRAM HTML GENERATOR 29

42. HTML Generator.
The HTML generator creates an HTML result page containing the anagrams or permutations requested

by the user. It operates by copying a “template” file to the designated output stream, interpolating variable
content at locations indicated by markers embedded in the template.
〈HTML generator 42 〉 ≡

static void generateHTML(ostream &os , char stopAt = 0)
{

ifstream is (HTML template .c str ());
string s;
bool skipping = false ;
while (getline (is , s)) {

if (s.substr (0, 5) ≡ "<!−− ") {
〈Process meta-command in HTML template 43 〉;

}
else {

if (¬skipping) {
os � s � endl ;

}
}

}
}

This code is used in section 34.

43. HTML comments beginning in column 1 are used as meta-commands for purposes such as marking
sections of the file to be skipped and to trigger the inclusion of variable content.
〈Process meta-command in HTML template 43 〉 ≡

if (s[5] ≡ ’@’) {
〈Process include meta-command 45 〉;

}
else {
〈Process section marker meta-command 44 〉;

}
This code is used in section 42.

44. As the interaction with the user progresses, we wish to include additional steps in the HTML reply
returned. The template file includes section markers between each step in the interaction. If the stopAt
argument matches the character in the section marker, the balance of the file is skipped until the special “X”
section marker at the bottom is encountered.
〈Process section marker meta-command 44 〉 ≡

if (s[5] ≡ ’X’) {
skipping = false ;

}
else if (s[5] ≡ stopAt) {

skipping = true ;
}

This code is used in section 43.

30 HTML GENERATOR ANAGRAM §45

45. Meta-commands which begin with “@” trigger inclusion of variant material in the file, replacing the
marker. Naturally, we process these includes only when we aren’t skipping sections in the file.
〈Process include meta-command 45 〉 ≡

if (¬skipping) {
switch (s[6]) {
case ’1’:

os � " value=\"" � target � "\"" � endl ;
break;

case ’2’: 〈Generate first word selection list 46 〉;
break;

case ’3’:
〈Generate first word hidden argument 47 〉;
break;

case ’4’:
〈Generate list of anagrams containing specified word 48 〉;
break;

case ’5’:
〈Generate all permutations of selected anagram 51 〉;
break;

case ’6’:
〈Generate pass-on of target and firstwords to subsequent step 49 〉;
〈Generate pass-on of anagrams generated in step 2 50 〉;
break;

}
}

This code is used in section 43.

46. The following code generates the list used to select the set of anagrams to be generated based on
a word it contains. In the first phase of processing, this is simply the pruned results from the dictionary
search. Subsequently, the list is simply parroted from a hidden form field passed in from the previous step.
〈Generate first word selection list 46 〉 ≡
{

vector〈string〉 &svec = (cgi step ≡ 1) ? anagrams : firstwords ;
vector〈string〉 ::size typenfound = svec .size ();
if (nfound > 12) {

nfound = 12;
}
os � " size=" � nfound � ">" � endl ;
for (vector〈string〉 :: iterator p = svec .begin (); p 6= svec .end (); p++) {

os � " <option>" � ∗p � endl ;
}

}
This code is used in section 45.

§47 ANAGRAM HTML GENERATOR 31

47. Polly want a crude hack? Here’s where we generate the list of first words which subsequent steps
parrot to populate the first word selection box. If we’re in a subsequent step this is, in turn parroted from
the preceding step.
〈Generate first word hidden argument 47 〉 ≡
{

vector〈string〉 &svec = (cgi step ≡ 1) ? anagrams : firstwords ;
os � "<input type=\"hidden\" name=\"target\" value=\"" � target � "\">" � endl ;
os � "<input type=\"hidden\" name=\"firstwords\" value=\"";
for (vector〈string〉 :: iterator p = svec .begin (); p 6= svec .end (); p++) {

if (p 6= svec .begin ()) {
os � ",";

}
os � ∗p;

}
os � "\">" � endl ;

}
This code is used in section 45.

48. Here we emit the list of anagrams which contain a word chosen from the list of words in step 2. As
with the table of first words above, we either emit these words from the anagrams vector if we’re in step 2
or from the canned anagrams for word in subsequent steps.
〈Generate list of anagrams containing specified word 48 〉 ≡
{

vector〈string〉 &svec = (cgi step ≡ 2) ? anagrams : anagrams for word ;
vector〈string〉 ::size typenfound = svec .size ();
if (nfound > 12) {

nfound = 12;
}
os � " size=" � nfound � ">" � endl ;
for (vector〈string〉 :: iterator p = svec .begin (); p 6= svec .end (); p++) {

os � " <option>" � ∗p � endl ;
}

}
This code is used in section 45.

49. In steps subsequent to 1, we need to preserve the target and list of first words selection box. This
code generates hidden input fields to pass these values on to subsequent steps.
〈Generate pass-on of target and firstwords to subsequent step 49 〉 ≡
{

os � "<input type=\"hidden\" name=\"target\" value=\"" � target � "\">" � endl ;
os � "<input type=\"hidden\" name=\"firstwords\" value=\"";
for (vector〈string〉 :: iterator p = firstwords .begin (); p 6= firstwords .end (); p++) {

if (p 6= firstwords .begin ()) {
os � ",";

}
os � ∗p;

}
os � "\">" � endl ;

}
This code is used in section 45.

32 HTML GENERATOR ANAGRAM §50

50. Similarly, in steps 2 and later we need to pass on the anagrams generated by step 2. We also output
these as a hidden input field.
〈Generate pass-on of anagrams generated in step 2 50 〉 ≡
{

vector〈string〉 &svec = (cgi step ≡ 2) ? anagrams : anagrams for word ;
os � "<input type=\"hidden\" name=\"anagrams\" value=\"";
for (vector〈string〉 :: iterator p = svec .begin (); p 6= svec .end (); p++) {

if (p 6= svec .begin ()) {
os � ",";

}
os � ∗p;

}
os � "\">" � endl ;

}
This code is used in section 45.

51. When the user selects one of the anagrams presented in step 3 and proceeds to step 4, we prepare a
list of all possible permutations of the anagram. The user’s gotta be pretty lazy not to be able to to this in
his head, but what the heck, many Web users are lazy! Besides, STL’s next permutation algorithm does all
the work, so even a lazy implementor doesn’t have to overexert himself.

Before the table of permutations, we emit the rows= specification and close the textarea tag. For a list
of n items there are n! permutations, so we compute the factorial and size the box accordingly.
〈Generate all permutations of selected anagram 51 〉 ≡
{

int n = permutations .size (), nbang = 1, cols = 1;
vector〈string〉 :: iterator p;
while (n > 1) {

nbang ∗= n−−;
}
for (p = permutations .begin (); p 6= permutations .end (); p++) {

if (p 6= permutations .begin ()) {
cols ++;

}
cols += p~ length ();

}
cout � "cols=" � cols � " rows=" � nbang � ">" � endl ;
sort (permutations .begin (), permutations .end ());
do {

for (p = permutations .begin (); p 6= permutations .end (); p++) {
if (p 6= permutations .begin ()) {

os � " ";
}
os � ∗p;

}
os � endl ;

} while (next permutation (permutations .begin (), permutations .end ()));
}

This code is used in section 45.

§52 ANAGRAM HTML GENERATOR 33

52. The following include files provide access to system and library components.
〈System include files 52 〉 ≡
#include "config.h"

#include <iostream>

#include <iomanip>

#include <fstream>

#include <cstdlib>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;
#include <stdio.h>

#include <fcntl.h>

#include <ctype.h>

#include <string.h>

#ifdef HAVE_STAT

#include <sys/stat.h>

#endif
#ifdef HAVE_UNISTD_H

#include <unistd.h>

#endif
#ifdef WIN32 /∗ Lazy way to avoid manually modifying config.h for Win32 builds ∗/
#undef HAVE_MMAP

#endif
#ifdef HAVE_MMAP

#include <sys/mman.h>

#endif
#include "getopt.h" /∗ Use our own getopt , which supports getopt long ∗/

extern"C" void uncgi (void);
/∗ We use uncgi to transform CGI arguments into environment variables ∗/

This code is used in section 5.

34 HTML GENERATOR ANAGRAM §53

53. Here are the global variables we use to keep track of command line options.
〈Command line arguments 53 〉 ≡
#ifdef NEEDED

static bool flattenISOchars = false ; /∗ Flatten ISO 8859-1 8-bit codes to ASCII ∗/
#endif

static bool bail = false ; /∗ Bail out on first match for a given word ∗/
static string dictfile = "crossword.txt"; /∗ Dictionary file name ∗/
static string bdictfile = "wordlist.bin"; /∗ Binary dictionary file ∗/
static string exportfile = ""; /∗ Export dictionary file name ∗/
static string target = ""; /∗ Target phrase ∗/
static dictionaryWord seed (""); /∗ Seed word ∗/
static dictionaryWord empty (""); /∗ Empty dictionaryWord ∗/
static vector〈dictionaryWord ∗〉 anagram ; /∗ Anagram search stack ∗/
static int cgi step = 0; /∗ CGI processing step or 0 if not CGI-invoked ∗/
static bool cgi all = false ; /∗ Generate all anagrams in CGI step 2 ∗/
static bool html = false ; /∗ Generate HTML output ? ∗/
static string HTML template = "template.html"; /∗ Template for HTML output ∗/
static bool direct output = false ; /∗ Write anagrams directly to stream ? ∗/
static ostream &dout = cout ; /∗ Direct output stream ∗/
static bool permute = false ; /∗ Generate permutations of target ∗/

This code is used in section 6.

54. The following options are referenced in class definitions and must be placed in the 〈Global variables 35 〉
section so they’ll be declared first.
〈Global variables 35 〉 +≡

static bool verbose = false ; /∗ Print verbose processing information ∗/

§55 ANAGRAM HTML GENERATOR 35

55. Procedure usage prints how-to-call information. This serves as a reference for the option processing
code which follows. Don’t forget to update usage when you add an option!
〈Global functions 34 〉 +≡

static void usage (void)
{

cout � PRODUCT � " −− Anagram Finder. Call\n";
cout � " with " � PRODUCT � " [options] ’phrase’ [contained words]\n";
cout � "\n";
cout � "Options:\n";
cout � " −−all Generate all anagrams in CGI step 2\n";
cout � " −−bail Bail out after first match for a given word\n";
cout � " −−bindict, −b file Use file as binary dictionary\n";
cout � " −−cgi Set options from uncgi environment variables\n";
cout � " −−copyright Print copyright information\n";
cout � " −−dictionary, −d file Use file as dictionary\n";
cout � " −−export file Export binary dictionary file\n";

#ifdef NEEDED

cout � " −−flatten−iso Flatten ISO 8859−1 8−bit codes to ASCII\n";
#endif

cout � " −−help, −u Print this message\n";
cout � " −−html Generate HTML output\n";
cout � " −−permute, −p Generate permutations of target\n";
cout � " −−seed, −s word Specify seed word\n";
cout � " −−step number CGI processing step\n";
cout � " −−target, −t phrase Target phrase\n";
cout � " −−template Template for HTML output\n";
cout � " −−verbose, −v Print processing information\n";
cout � " −−version Print version number\n";
cout � "\n";
cout � "by John Walker\n";
cout � "http://www.fourmilab.ch/\n";

}

36 HTML GENERATOR ANAGRAM §56

56. We use getopt long to process command line options. This permits aggregation of single letter options
without arguments and both −darg and −d arg syntax. Long options, preceded by −−, are provided as
alternatives for all single letter options and are used exclusively for less frequently used facilities.
〈Process command-line options 56 〉 ≡

static const struct option long options [] = {
{"all", 0,Λ, 206},
{"bail", 0,Λ, 208},
{"bindict", 1,Λ, ’b’},
{"cgi", 0,Λ, 202},
{"copyright", 0,Λ, 200},
{"dictionary", 1,Λ, ’d’},
{"export", 1,Λ, 207},

#ifdef NEEDED

{"flatten−iso", 0,Λ, 212},
#endif
{"html", 0,Λ, 203},
{"permute", 0,Λ, ’p’},
{"seed", 1,Λ, ’s’},
{"step", 1,Λ, 205},
{"target", 1,Λ, ’t’},
{"template", 1,Λ, 204},
{"help", 0,Λ, ’u’},
{"verbose", 0,Λ, ’v’},
{"version", 0,Λ, 201},
{0, 0, 0, 0}
};
int option index = 0;
while ((opt = getopt long (argc , argv , "b:d:ps:t:uv", long options ,&option index)) 6= −1) {

switch (opt) {
case 206: /∗ −−all Generate all anagrams in CGI step 2 ∗/

cgi all = true ;
break;

case 208: /∗ −−bail Bail out after first match for word ∗/
bail = true ;
break;

case ’b’: /∗ −b, −−bindict binaryDictionary ∗/
bdictfile = optarg ;
break;

case 202: /∗ −−cgi Set options from uncgi environment variables ∗/
〈Set options from uncgi environment variables 57 〉;
break;

case 200: /∗ −−copyright Print copyright information ∗/
cout � "This program is in the public domain.\n";
return 0;

case ’d’: /∗ −d, −−dictionary dictionary-file ∗/
dictfile = optarg ;
break;

case 207: /∗ −−export dictionary-file ∗/
exportfile = optarg ;
break;

#ifdef NEEDED

case 212: /∗ −−flatten−iso Flatten ISO 8859-1 8-bit codes to ASCII ∗/

§56 ANAGRAM HTML GENERATOR 37

flattenISOchars = true ;
break;

#endif
case 203: /∗ −−html Generate HTML output ∗/

html = true ;
break;

case ’p’: /∗ −p, −−permute Generate permutations of target ∗/
permute = true ;
break;

case ’s’: /∗ −s, −−seed seed-word ∗/
{

dictionaryWord ∗given = new dictionaryWord(optarg);
seed = seed + ∗given ;
anagram .push back (given);

}
break;

case 205: /∗ –step step-number ∗/
cgi step = atoi (optarg);
break;

case ’t’: /∗ −t, −−target target-phrase ∗/
target = optarg ;
break;

case 204: /∗ −−template HTML-template-file ∗/
HTML template = optarg ;
break;

case ’u’: /∗ −u, −−help Print how-to-call information ∗/
case ’?’: usage ();
return 0;

case ’v’: /∗ −v, −−verbose Print processing information ∗/
verbose = true ;
break;

case 201: /∗ −−version Print version information ∗/
cout � PRODUCT " " VERSION "\n";
cout � "Last revised: " REVDATE "\n";
cout � "The latest version is always available\n";
cout � "at http://www.fourmilab.ch/anagram/\n";
cout � "Please report bugs to bugs@fourmilab.ch\n";
return 0;

default:
cerr � "***Internal error: unhandled case " � opt � " in option processing.\n";
return 1;

}
}

This code is used in section 25.

38 HTML GENERATOR ANAGRAM §57

57. When we’re invoked as a CGI program by a Web browser, the uncgi program parses the GET or POST
form arguments from the invoking page and sets environment variables for each field in the form. When the
−−cgi option is specified on the command line, this code checks for those variables and sets the corresponding
options. This avoids the need for a clumsy and inefficient shell script to translate the environment variables
into command line options.
〈Set options from uncgi environment variables 57 〉 ≡
{

char ∗env ;
uncgi ();
if ((env = getenv ("WWW_target")) 6= Λ) {

target = env ;
}
if ((env = getenv ("WWW_step")) 6= Λ) {

cgi step = atoi (env);
}
else {

cgi step = 1;
}
if (getenv ("WWW_all") 6= Λ) {

cgi all = true ;
}
if ((env = getenv ("WWW_firstwords")) 6= Λ) {

bool done = false ;
char ∗endw ;
while (¬done) {

if ((endw = strchr (env , ’,’)) 6= Λ) {
∗endw = 0;
firstwords .push back (env);
env = endw + 1;

}
else {

firstwords .push back (env);
done = true ;

}
}

}
if ((env = getenv ("WWW_anagrams")) 6= Λ) {

bool done = false ;
char ∗endw ;
while (¬done) {

if ((endw = strchr (env , ’,’)) 6= Λ) {
∗endw = 0;
anagrams for word .push back (env);
env = endw + 1;

}
else {

anagrams for word .push back (env);
done = true ;

}
}

}

§57 ANAGRAM HTML GENERATOR 39

if ((env = getenv ("WWW_results")) 6= Λ) {
bool done = false ;
char ∗endw ;
while (¬done) {

if ((endw = strchr (env , ’ ’)) 6= Λ) {
∗endw = 0;
permutations .push back (env);
env = endw + 1;

}
else {

permutations .push back (env);
done = true ;

}
}

}
if ((env = getenv ("WWW_word")) 6= Λ) {

if (¬cgi all) {
dictionaryWord ∗given = new dictionaryWord(env);
seed = seed + ∗given ;
anagram .push back (given);

}
}

}
This code is used in section 56.

58. Some more global variables to keep track of file name arguments on the command line. . ..
〈Global variables 35 〉 +≡

static string infile = "−", /∗ ”-” means standard input or output ∗/
outfile = "−";

59.

〈Verify command-line arguments 59 〉 ≡
if ((exportfile ≡ "") ∧ (target ≡ "") ∧ (optind ≥ argc)) {

cerr � "No target phrase specified." � endl �
"Specify the −−help option for how−to−call information." � endl ;

return 2;
}

This code is used in section 25.

40 CHARACTER SET DEFINITIONS AND TRANSLATION TABLES ANAGRAM §60

60. Character set definitions and translation tables.
The following sections define the character set used in the program and provide translation tables among

various representations used in formats we emit.

§61 ANAGRAM ISO 8859-1 SPECIAL CHARACTERS 41

61. ISO 8859-1 special characters.
We use the following definitions where ISO 8859-1 characters are required as strings in the program. Most

modern compilers have no difficulty with such characters embedded in string literals, but it’s surprisingly
difficult to arrange for Plain TEX (as opposed to LATEX) to render them correctly. Since CWEB produces
Plain TEX, the path of least resistance is to use escapes for these characters, which also guarantess the
generated documentation will work on even the most basic TEX installation. Characters are given their
Unicode names with spaces and hyphens replaced by underscores. Character defined with single quotes as
char have named beginning with C_.
#define REGISTERED_SIGN "\xAE"

#define C_LEFT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK #AB
#define C_RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK #BB
#define RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK "\xBB"

42 FLAT 7-BIT ASCII APPROXIMATION OF ISO CHARACTERS ANAGRAM §62

62. Flat 7-bit ASCII approximation of ISO characters.
The following table is indexed by ISO codes 160 to 255, (#A0–#FF) and gives the flat ASCII rendering of

each ISO character. For accented characters, these are simply the characters with the accents removed; for
more esoteric characters the translations may be rather eccentric.
〈Global variables 35 〉 +≡ /∗ Latin 1/Unicode Hex Description ∗/

static const char ∗const flattenISO [] = {" ", /∗ #A0 Non-breaking space ∗/
"!", /∗ #A1 Spanish open exclamation ∗/
"cents", /∗ #A2 Cent sign ∗/
"GBP", /∗ #A3 Pounds Sterling ∗/
"$", /∗ #A4 Universal currency symbol ∗/
"JPY", /∗ #A5 Japanese Yen ∗/
"|", /∗ #A6 Broken vertical bar ∗/
"Sec.", /∗ #A7 Section sign ∗/
"’’", /∗ #A8 diaeresis ∗/
"(C)", /∗ #A9 Copyright ∗/
"a", /∗ #AA Spanish feminine ordinal indicator ∗/
"<<", /∗ #AB Left pointing guillemet ∗/
"NOT", /∗ #AC Logical not ∗/
"", /∗ #AD Soft (discretionary) hyphen ∗/
"(R)", /∗ #AE Registered trademark ∗/
"−", /∗ #AF Overbar ∗/
"o", /∗ #B0 Degree sign ∗/
"+/−", /∗ #B1 Plus or minus ∗/
"^2", /∗ #B2 Superscript 2 ∗/
"^3", /∗ #B3 Superscript 3 ∗/
"’", /∗ #B4 Acute accent ∗/
"mu", /∗ #B5 Micro sign ∗/
"PP.", /∗ #B6 Paragraph sign ∗/
".", /∗ #B7 Middle dot ∗/
",", /∗ #B8 Spacing cedilla ∗/
"^1", /∗ #B9 Superscript 1 ∗/
"o", /∗ #BA Spanish masculine ordinal indicator ∗/
">>", /∗ #BB Right pointing guillemet ∗/
"1/4", /∗ #BC Fraction one quarter ∗/
"1/2", /∗ #BD Fraction one half ∗/
"3/4", /∗ #BE Fraction three quarters ∗/
"?", /∗ #BF Spanish open question ∗/
"A", /∗ #C0 Accented capital A grave ∗/
"A", /∗ #C1 acute ∗/
"A", /∗ #C2 circumflex ∗/
"A", /∗ #C3 tilde ∗/
"A", /∗ #C4 diaeresis ∗/
"A", /∗ #C5 Capital A ring / Angstrom symbol ∗/
"Ae", /∗ #C6 Capital Ae ∗/
"C", /∗ #C7 Capital C cedilla ∗/
"E", /∗ #C8 Accented capital E grave ∗/
"E", /∗ #C9 acute ∗/
"E", /∗ #CA circumflex ∗/
"E", /∗ #CB diaeresis ∗/
"I", /∗ #CC Accented capital I grave ∗/
"I", /∗ #CD acute ∗/
"I", /∗ #CE circumflex ∗/

§62 ANAGRAM FLAT 7-BIT ASCII APPROXIMATION OF ISO CHARACTERS 43

"I", /∗ #CF diaeresis ∗/
"Th", /∗ #D0 Capital Eth ∗/
"N", /∗ #D1 Capital N tilde ∗/
"O", /∗ #D2 Accented capital O grave ∗/
"O", /∗ #D3 acute ∗/
"O", /∗ #D4 circumflex ∗/
"O", /∗ #D5 tilde ∗/
"O", /∗ #D6 diaeresis ∗/
"x", /∗ #D7 Multiplication sign ∗/
"O", /∗ #D8 Capital O slash ∗/
"U", /∗ #D9 Accented capital U grave ∗/
"U", /∗ #DA acute ∗/
"U", /∗ #DB circumflex ∗/
"U", /∗ #DC diaeresis ∗/
"Y", /∗ #DD Capital Y acute ∗/
"Th", /∗ #DE Capital thorn ∗/
"ss", /∗ #DF German small sharp s ∗/
"a", /∗ #E0 Accented small a grave ∗/
"a", /∗ #E1 acute ∗/
"a", /∗ #E2 circumflex ∗/
"a", /∗ #E3 tilde ∗/
"a", /∗ #E4 diaeresis ∗/
"a", /∗ #E5 Small a ring ∗/
"ae", /∗ #E6 Small ae ∗/
"c", /∗ #E7 Small c cedilla ∗/
"e", /∗ #E8 Accented small e grave ∗/
"e", /∗ #E9 acute ∗/
"e", /∗ #EA circumflex ∗/
"e", /∗ #EB diaeresis ∗/
"i", /∗ #EC Accented small i grave ∗/
"i", /∗ #ED acute ∗/
"i", /∗ #EE circumflex ∗/
"i", /∗ #EF diaeresis ∗/
"th", /∗ #F0 Small eth ∗/
"n", /∗ #F1 Small n tilde ∗/
"o", /∗ #F2 Accented small o grave ∗/
"o", /∗ #F3 acute ∗/
"o", /∗ #F4 circumflex ∗/
"o", /∗ #F5 tilde ∗/
"o", /∗ #F6 diaeresis ∗/
"/", /∗ #F7 Division sign ∗/
"o", /∗ #F8 Small o slash ∗/
"u", /∗ #F9 Accented small u grave ∗/
"u", /∗ #FA acute ∗/
"u", /∗ #FB circumflex ∗/
"u", /∗ #FC diaeresis ∗/
"y", /∗ #FD Small y acute ∗/
"th", /∗ #FE Small thorn ∗/
"y" /∗ #FF Small y diaeresis ∗/
};

44 ISO 8859-1 CHARACTER TYPES ANAGRAM §63

63. ISO 8859-1 character types.
The following definitions provide equivalents for ctype.h macros which work for ISO-8859 8 bit characters.

They require that ctype.h be included before they’re used.
〈Global variables 35 〉 +≡
#define isISOspace (x) (isascii (((unsigned char)(x))) ∧ isspace (((unsigned char)(x))))
#define isISOalpha (x)

((isoalpha [(((unsigned char)(x)))/8] & (#80� ((((unsigned char)(x))) % 8))) 6= 0)
#define isISOupper (x)

((isoupper [(((unsigned char)(x)))/8] & (#80� ((((unsigned char)(x))) % 8))) 6= 0)
#define isISOlower (x)

((isolower [(((unsigned char)(x)))/8] & (#80� ((((unsigned char)(x))) % 8))) 6= 0)
#define toISOupper (x) (isISOlower (x) ? (isascii (((unsigned char)(x))) ? toupper (x) : (((((unsigned

char)(x)) 6= #DF) ∧ (((unsigned char)(x)) 6= #FF)) ? (((unsigned char)(x))− #20) : (x))) : (x))
#define toISOlower (x)

(isISOupper (x) ? (isascii (((unsigned char)(x))) ? tolower (x) : (((unsigned char)(x)) + #20)) : (x))

64. The following tables are bit vectors which define membership in the character classes tested for by
the preceding macros.
〈Global variables 35 〉 +≡

unsigned char isoalpha [32] = {0, 0, 0, 0, 0, 0, 0, 0, 127, 255, 255, 224, 127, 255, 255, 224, 0, 0, 0, 0, 0, 0, 0, 0,
255, 255, 254, 255, 255, 255, 254, 255};

unsigned char isoupper [32] = {0, 0, 0, 0, 0, 0, 0, 0, 127, 255, 255, 224, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255,
254, 254, 0, 0, 0, 0};

unsigned char isolower [32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 127, 255, 255, 224, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
255, 255, 254, 255};

§65 ANAGRAM CHARACTER CATEGORY TABLE 45

65. Character category table.
The character category table allows us to quickly count the number of character by category (alphabetic,

upper or lower case, digit, etc.) while scanning a string. Instead of a large number of procedural tests in the
inner loop, we use the build letter category function to initialise a 256 element table of pointers to counters
in which the category counts are kept. The table is simply indexed by each character in the string and the
indicated category count incremented.
#define G clear () G lower = G upper = G digits = G spaces = G punctuation = G ISOlower =

G ISOupper = G ISOpunctuation = G other = 0
〈Global variables 35 〉 +≡

unsigned int ∗letter category [256];
static unsigned int G lower , G upper , G digits , G spaces , G punctuation , G ISOlower , G ISOupper ,

G ISOpunctuation , G other ;

46 CHARACTER CATEGORY TABLE ANAGRAM §66

66.

〈Character category table initialisation 66 〉 ≡
static void build letter category (void)
{

for (int c = 0; c < 256; c++) {
if (isalpha (c)) {

if (islower (c)) {
letter category [c] = &G lower ;

}
else {

letter category [c] = &G upper ;
}

}
else {

if (isdigit (c)) {
letter category [c] = &G digits ;

}
else if (isspace (c) ∨ (c ≡ ’\xA0’)) { /∗ ISO nonbreaking space is counted as space ∗/

letter category [c] = &G spaces ;
}
else if (ispunct (c)) {

letter category [c] = &G punctuation ;
}
else if (isISOalpha (c)) {

if (isISOlower (c)) {
letter category [c] = &G ISOlower ;

}
else {

letter category [c] = &G ISOupper ;
}

}
else if (c ≥ #A0) {

letter category [c] = &G ISOpunctuation ;
}
else {

letter category [c] = &G other ;
}

}
}

}
This code is used in section 34.

§67 ANAGRAM RELEASE HISTORY 47

67. Release history.

Release 1: March 2002

Initial release.

Release 1.1: February 2003

Minor source code changes for compatibility with gcc 3.2.2. Compatibility with earlier compiler versions is
maintained.

48 DEVELOPMENT LOG ANAGRAM §68

68. Development log.

2002 February 23

Created development tree and commenced implementation.

2002 February 26

Much autoconf plumbing today to get things to work on Solaris without installing GNU C++ dynamic
libraries. I finally ended up having autoconf sense the operating system type with uname and, if it’s
“SunOS”, tack −static onto the link. Static linking on Solaris resulted in an error about doubly defined
exported symbols in getopt.c, but commenting out these symbols seems to fix the problem on Solaris and
still work on Linux. Static linking on Linux works fine but takes forever, so it’s worth making the test to
speed up the development cycle.

2002 March 2

Okay, it’s basically working now, so it’s time to start optimising this horrifically slow program so it doesn’t
kill the server when we announce it to the public. I started with a test string which, when compiled with
−g −O2 on Lysander, ran 8.690 seconds.

I compiled with −pg and ran gprof and discovered, to nobody’s amazement, that it’s spending a huge
amount of time counting letters and classifying characters. It was high time to get rid of all that procedural
code in the inner loop, so I defined a letter category table which is initialised once with pointers to global
category counts with names like G lower and G digits . You can reset the counts with the macro G clear ().
The table is filled in with pointers using procedural code as before. Once the table is built, the category
counter simply increments the counter pointed to by indexing the table. The counts are then copied to the
corresponding fields in the dictionaryWord object. Result: run time fell to 7.030 seconds.

Adding two dictionary words to concatenate them performed a complete re-count of the string. I added a
∗ + operator which simply concatenates the two strings and adds the letter and character category counts.
Using this precisely once, where anagram search generates its candidate phrases, reduced run time to 6.510
seconds.

I further sped up candidate testing in anagram search by adding a special-purpose contained method to
dictionaryWord. This takes pointers to two dictionaryWords and tests whether the two, considered
logically concatenated, are “contained” within the object word. This allows testing containment without
ever constructing a new dictionaryWord or re-counting letters. This sped up the test case to 3.180 seconds.

Yaaar! Knuth was really right when he said that ‘premature optimisation is the root of all evil.” I was guilty
of that in anagram search where I made a test on the combined length of the base phrase and candidate word,
without realising thay the contained method would reject the candidate in less time than that expended in
checking the length.

2002 March 3

Oops. . .specifying a seed or other dictionaryWord argument on the command line or via CGI environment
variables crashed since the letter category table hadn’t been initialised. I moved the initialisation to before
the arguments are parsed.

2002 March 5

I obtained a massive speed-up (down to about 0.17 seconds on the test which ran 8.69 seconds at the start
of the optimisation) through the expedient of making an initial pass through the dictionary and preparing
an “auxiliary dictionary” which contains only words which can possibly appear in anagrams of the target
phrase. If a word in the dictionary contains more of any letter than the target phrase, it is excluded, and

§68 ANAGRAM DEVELOPMENT LOG 49

we never have to consider it during the expensive recursive process of searching for anagrams. The auxiliary
dictionary auxdict is a table of pointers to words in the binary dictionary, so referencing through these
pointers never requires copiying data.

In the same optimisation pass, I modified the anagram search function which uses the auxiliary dictionary,
a anagram search , to keep its anagram candidate stack as a vector〈dictionaryWord ∗〉 rather than
dictionaryWord. This avoids copying the object as words are pushed and popped off the stack.

2002 March 12

Added logic to configure.in to test whether the system supports memory mapping of files (using the
presence of the mmap function as a proxy). If it doesn’t the binaryDictionary loadFromFile method
allocates an in-memory buffer and reads the binary dictionary into it. We prefer memory mapping since the
MAP_SHARED attribute allows any number of processes to share the dictionary in page space, which reduces
memory requirements and speeds things up enormously in server applications such as CGI scripts.

Integrated the embedded build of ctangle and cweave in the local cweb directory from EGGSHELL. Now the
CWEB tools will automatically be re-built on the user’s system.

2002 March 13

To simplify use of the stand-alone program from the command line, I rewrote command line parsing to permit
specifying the target as the first command line argument as long as no −−target options has previously
specified it. You may still specify seed words after the target argument regardless of whether it was supplied
by target or as an unqualified argument.

Switched the −b option from a synonym for −−bail to a synonym of −−bindict—typical command line
users are more likely to specify an alternative dictionary than request single-word bailout.

Added some diagnostic output to binary dictionary creation and loading when the −−verbose option is
specified.

Added a −−permute (or −p) option which generates permutations of the target phrase rather than anagrams.
This capability was already in the CGI step 3 processing, but this makes it available to command line users
as well.

2002 March 16

Several of the single-letter option abbreviations which take an argument lacked the requisite “:” after the
letter in the argument to getopt long , resulting in a segmentation fault if any were used. Fixed.

Added documentation to Makefile.in and INSTALL that this a nerdy user-level application which isn’t
intended to be installed system-wide.

2002 March 17

Integrated uncgi 1.10 as a built-in function with the −DLIBRARY option, eliminating the need to install the
stand-alone program and the inefficiency executing it entails.

2002 March 20

Updated the man page, anagram.1, synchronising it with the HTML and built-in program documentation.
Changed the version number to 1.0 in anticipation of release.

2002 March 21

50 DEVELOPMENT LOG ANAGRAM §68

Cleaned up building on Win32 with DJgpp. The complete program is built by the batch file makew32.bat. I
added a new winarch target to Makefile.in to create the winarch.zip file containing everything you need
to build the Win32 executable.

2002 March 22

Cleaned up all warnings on a −Wall build with gcc.

Removed unnecessary header file includes.

Removed CLEAN_BUT_SLOW code in dictionaryWord; we’re never going to go back to it, so why not avoid
confusion.

Added high level functional documentation for anagram search which is, after all, where all the real work
gets done.

Version 1.0.

2003 February 15

Cleaned up in order to compile with gcc 3.2.2.

Changed four instances where a function returning an iterator to a string was assigned to a char ∗ to assign
to a string :: iterator instead.

Removed “.h” from three C++ header file includes.

With these changes, it still compiles on 2.96 without any problems.

Version 1.1.

§69 ANAGRAM INDEX 51

69. Index. The following is a cross-reference table for anagram. Single-character identifiers are not
indexed, nor are reserved words. Underlined entries indicate where an identifier was declared.

a: 18, 38.
a anagram search : 68.
anagram : 30, 53, 56, 57.
anagram search : 30, 37, 38, 41, 68.
anagrams : 37, 40, 46, 47, 48, 50.
anagrams for word : 37, 48, 50, 57.
argc : 25, 29, 30, 56, 59.
argv : 25, 29, 30, 56.
assign : 21.
atoi : 56, 57.
auxdict : 30, 35, 36, 41, 68.
auxdictl : 30, 35, 36, 41.
aw : 30, 41.
b: 18.
bail : 26, 30, 37, 38, 41, 53, 56.
bd : 36.
bdict : 27, 30.
bdictfile : 27, 53, 56.
begin : 7, 9, 13, 19, 20, 33, 46, 47, 48, 49, 50, 51.
binary : 28.
binaryDictionary: 15, 21, 23, 24, 27, 30, 36,

39, 40, 41, 68.
build auxiliary dictionary : 27, 30, 36.
build letter category : 25, 65, 66.
busted : 36.
c: 8, 9, 11, 16, 66.
C_: 61.
C digits : 21.
C ISOlower : 21.
C ISOpunctuation : 21.
C ISOupper : 21.
C_LEFT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK: 61.
C lower : 21.
C punctuation : 21.
C_RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK: 61.
C spaces : 21.
c str : 8, 22, 28, 42.
C upper : 21.
caddr t : 22.
candidate : 7, 14, 15.
categoryCountSize : 21.
cerr : 19, 20, 22, 30, 56, 59.
cgi all : 53, 56, 57.
cgi step : 26, 27, 46, 47, 48, 50, 53, 56, 57.
characterCategories : 21.
close : 21, 28.
cols : 51.
contained : 7, 14, 15, 41, 68.
countLetters : 7, 8.
cout : 7, 10, 19, 21, 22, 26, 51, 53, 55, 56.

cp : 8.
data : 11.
describe : 7, 10, 19, 21.
dict : 21, 22, 28.
DICTECHO: 28.
dictfile : 28, 53, 56.
dictionary: 17, 19, 20, 21, 28.
dictionaryWord: 7, 8, 9, 10, 11, 12, 13, 14,

15, 17, 18, 19, 20, 21, 26, 30, 36, 37, 38, 39,
41, 53, 56, 57, 68.

dictionaryWordComparisonOperator: 12.
dictionaryWords : 68.
dif : 28.
digits : 7, 8, 10, 11, 13, 19, 23.
digitsOK : 19.
direct output : 26, 40, 53.
dlencomp: 18, 19.
done : 32, 57.
dout : 33, 40, 53.
empty : 53.
end : 7, 9, 13, 19, 20, 33, 46, 47, 48, 49, 50, 51.
endl : 10, 19, 20, 22, 23, 28, 30, 33, 40, 42, 45,

46, 47, 48, 49, 50, 51, 59.
endw : 57.
env : 57.
ep : 7.
erase : 13.
es : 28.
exit : 22.
exportfile : 26, 28, 53, 56, 59.
exportToBinaryFile : 7, 11, 19, 20, 21, 28.
false : 12, 14, 15, 28, 32, 38, 41, 42, 44, 53, 54, 57.
fclose : 22.
fileHandle : 21, 22.
find : 13.
find first not of : 32.
find first of : 32.
first : 21, 24, 36.
firstwords : 37, 46, 47, 49, 57.
flat : 8.
flattenISO : 8, 9, 62.
flattenISOchars : 53, 56.
flen : 21, 22.
fopen : 22.
fp : 22.
fread : 22.
fseek : 22.
ftell : 22.
G clear : 8, 65, 68.
G digits : 8, 65, 66, 68.

52 INDEX ANAGRAM §69

G ISOlower : 8, 65, 66.
G ISOpunctuation : 8, 65, 66.
G ISOupper : 8, 65, 66.
G lower : 8, 65, 66, 68.
G other : 65, 66.
G punctuation : 8, 65, 66.
G spaces : 8, 65, 66.
G upper : 8, 65, 66.
generateHTML: 26, 42.
get : 7.
getenv : 57.
getline : 19, 42.
getopt : 52.
getopt long : 52, 56, 68.
getText : 21.
given : 30, 56, 57.
HAVE_MMAP: 21, 22, 52.
HAVE_STAT: 52.
HAVE_UNISTD_H: 52.
html : 53, 56.
HTML template : 42, 53, 56.
i: 7, 10, 11, 12, 13, 14, 15, 23, 28, 36.
ifstream: 28, 42.
infile : 58.
ios : 28.
is : 19, 42.
is iso space : 7, 16.
is non iso letter : 7, 16.
isalpha : 66.
isascii : 63.
isdigit : 66.
isISOalpha : 16, 63, 66.
isISOlower : 63, 66.
isISOspace : 63.
isISOupper : 63.
islower : 8, 66.
ISO_NEEDED: 8.
isoalpha : 63, 64.
isolower : 63, 64.
ISOlower : 7, 8, 10, 11, 13, 23.
ISOpunctuation : 7, 8, 10, 11, 13, 19, 23.
ISOtoASCII : 7, 9.
isoupper : 63, 64.
ISOupper : 7, 8, 10, 11, 13, 23.
ispunct : 66.
isspace : 16, 63, 66.
istream: 19.
itemSize : 21.
iterator : 7, 9, 13, 19, 20, 33, 46, 47, 48, 49,

50, 51, 68.
j: 36, 39.
lc : 15, 36.

length : 7, 10, 11, 18, 21, 30, 32, 36, 41, 51.
letter category : 8, 65, 66, 68.
letterCount : 7, 8, 10, 11, 12, 13, 14, 15, 21,

36, 39, 40.
letterCountSize : 21, 23, 36, 39, 40.
loadFromFile : 19, 21, 27, 28, 68.
long options : 56.
lower : 7, 8, 10, 11, 13, 23.
main : 25.
MAP_NORESERVE: 22.
MAP_SHARED: 22, 68.
memcmp : 40.
memcpy : 21.
memset : 7.
mmap : 22, 68.
munmap : 21.
n: 9, 23, 30, 33, 38, 51.
nbang : 33, 51.
NEEDED: 53, 55, 56.
next : 21, 24, 36.
next permutation : 33, 51.
nfound : 46, 48.
noBlanks : 7.
npos : 13, 32.
nwords : 20, 21, 22, 36.
O_RDONLY: 22.
ofstream: 28.
onlyLetters : 7, 26, 29.
op : 12.
open : 22.
opt : 25, 56.
optarg : 56.
optind : 29, 30, 59.
option : 56.
option index : 56.
os : 7, 10, 11, 19, 20, 21, 23, 24, 28, 42, 45, 46,

47, 48, 49, 50, 51.
ostream: 7, 10, 11, 19, 20, 21, 23, 24, 42, 53.
out : 28.
outCount : 11.
outfile : 58.
p: 21, 23, 24, 30, 36, 41.
permutations : 31, 32, 33, 37, 51, 57.
permute : 26, 27, 53, 56.
pop back : 41.
pos : 32.
printDictionary : 21, 24.
printItem : 21, 23, 24.
PRODUCT: 1, 55, 56.
PROT_READ: 22.
prune : 38, 40, 41.
punctuation : 7, 8, 10, 11, 13, 19, 23.

§69 ANAGRAM INDEX 53

punctuationOK : 19.
push back : 19, 30, 32, 40, 41, 56, 57.
put : 11, 20.
REGISTERED_SIGN: 61.
remove if : 7.
replace : 9.
resize : 7.
result : 13, 40.
REVDATE: 1, 56.
rewind : 22.
RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK: 61.
s: 7, 19, 21, 42.
seed : 30, 53, 56, 57.
set: 7, 29.
setDictionaryWordCheap : 21, 30, 41.
setw : 10, 23.
size : 19, 20, 28, 33, 39, 40, 41, 46, 48, 51.
size type : 13, 32, 39, 46, 48.
skipping : 42, 44, 45.
sort : 33, 51.
sortByDescendingLength : 18, 19, 28.
spaces : 7, 8, 10, 11, 13, 19, 23.
spos : 32.
stable sort : 19.
std: 52.
stopAt : 42, 44.
strchr : 57.
string: 7, 9, 13, 19, 21, 23, 32, 33, 37, 40, 42, 46,

47, 48, 49, 50, 51, 53, 58, 68.
strlen : 9.
substr : 32, 42.
success : 41.
svec : 46, 47, 48, 50.
target : 26, 29, 32, 36, 38, 40, 41, 45, 47, 49,

53, 56, 57, 59.
tellp : 20.
text : 7, 8, 9, 10, 11, 13, 19, 21, 23, 28, 39, 40.
textLen : 23.
tlen : 36.
to iso lower : 7, 16.
to iso upper : 7, 16.
toISOlower : 16, 63.
toISOupper : 16, 63.
toLower : 7, 26, 29.
tolower : 63.
toupper : 8, 63.
toUpper : 7.
transform : 7.
true : 12, 14, 15, 19, 26, 32, 37, 40, 44, 56, 57.
uncgi : 52, 57.
update : 7.
upper : 7, 8, 10, 11, 13, 23.

usage : 55, 56.
vector: 17, 19, 20, 30, 33, 36, 37, 38, 39, 46,

47, 48, 49, 50, 51, 53, 68.
verbose : 19, 20, 22, 54, 56.
VERSION: 1, 56.
w: 7, 12, 13, 19, 21, 26.
wbase : 7, 14, 15, 39, 40, 41.
WIN32: 52.
write : 11.

54 NAMES OF THE SECTIONS ANAGRAM

〈Anagram search auxiliary function 38, 39, 40, 41 〉 Used in section 34.

〈Auxiliary dictionary construction 36 〉 Used in section 34.

〈Bring binary dictionary into memory 22 〉 Used in section 21.

〈Build the binary dictionary from a word list 28 〉 Used in section 26.

〈Character category table initialisation 66 〉 Used in section 34.

〈Class definitions 7, 18, 19, 21 〉 Used in section 6.

〈Class implementations 8, 9, 10, 11, 12, 13, 14, 15, 20, 23, 24 〉 Used in section 6.

〈Command line arguments 53 〉 Used in section 6.

〈Enumerate and print permutations 33 〉 Used in section 31.

〈Find anagrams for word 30 〉 Used in section 26.

〈Generate all permutations of selected anagram 51 〉 Used in section 45.

〈Generate first word hidden argument 47 〉 Used in section 45.

〈Generate first word selection list 46 〉 Used in section 45.

〈Generate list of anagrams containing specified word 48 〉 Used in section 45.

〈Generate pass-on of anagrams generated in step 2 50 〉 Used in section 45.

〈Generate pass-on of target and firstwords to subsequent step 49 〉 Used in section 45.

〈Generate permutations of target phrase 31 〉 Used in section 26.

〈Global functions 34, 55 〉 Used in section 6.

〈Global variables 35, 37, 54, 58, 62, 63, 64, 65 〉 Cited in section 54. Used in section 6.

〈HTML generator 42 〉 Used in section 34.

〈Load the binary dictionary if required 27 〉 Used in section 26.

〈Load words of target into permutations vector 32 〉 Used in section 31.

〈Main program 25 〉 Used in section 6.

〈Perform requested operation 26 〉 Used in section 25.

〈Process command-line options 56 〉 Used in section 25.

〈Process include meta-command 45 〉 Used in section 43.

〈Process meta-command in HTML template 43 〉 Used in section 42.

〈Process section marker meta-command 44 〉 Used in section 43.

〈Program implementation 6 〉 Used in section 5.

〈Set options from uncgi environment variables 57 〉 Used in section 56.

〈Specify target from command line argument if not already specified 29 〉 Used in section 26.

〈System include files 52 〉 Used in section 5.

〈Transformation functions for algorithms 16 〉 Used in section 7.

〈Verify command-line arguments 59 〉 Used in section 25.

ANAGRAM

Section Page
Introduction . 1 1

Command line . 2 2
Options . 3 3
Using anagram as a Web Server CGI Program . 4 4

Program global context . 5 5
Dictionary Word . 7 6
Dictionary . 17 14
Binary Dictionary . 21 16
Main program . 25 20

Auxiliary Dictionary . 35 25
Anagram Search Engine . 37 27
HTML Generator . 42 29

Character set definitions and translation tables . 60 40
ISO 8859-1 special characters . 61 41
Flat 7-bit ASCII approximation of ISO characters . 62 42
ISO 8859-1 character types . 63 44
Character category table . 65 45

Release history . 67 47
Development log . 68 48
Index . 69 51

	Introduction
	Command line
	Options
	Using {�am 	tfam 	entt anagram} as a Web Server CGI Program
	Program global context
	Dictionary Word
	Dictionary
	Binary Dictionary
	Main program
	Auxiliary Dictionary
	Anagram Search Engine
	HTML Generator
	Character set definitions and translation tables
	ISO 8859-1 special characters
	Flat 7-bit ASCII approximation of ISO characters
	ISO 8859-1 character types
	Character category table
	Release history
	Development log
	Index
	Names of the sections
	Anagram search auxiliary function
	Auxiliary dictionary construction
	Bring binary dictionary into memory
	Build the binary dictionary from a word list
	Character category table initialisation
	Class definitions
	Class implementations
	Command line arguments
	Enumerate and print permutations
	Find anagrams for word
	Generate all permutations of selected anagram
	Generate first word hidden argument
	Generate first word selection list
	Generate list of anagrams containing specified word
	Generate pass-on of anagrams generated in step 2
	Generate pass-on of target and firstwords to subsequent step
	Generate permutations of target phrase
	Global functions
	Global variables
	HTML generator
	Load the binary dictionary if required
	Load words of target into permutations vector
	Main program
	Perform requested operation
	Process command-line options
	Process include meta-command
	Process meta-command in HTML template
	Process section marker meta-command
	Program implementation
	Set options from uncgi environment variables
	Specify target from command line argument if not already specified
	System include files
	Transformation functions for algorithms
	Verify command-line arguments

